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Abstract

We consider the standard indivisible object allocation problem without mon-

etary transfer and allow each object to have a weak priority over agents. It is well

known that generally in such a problem stability (or no justified-envy) is not com-

patible with efficiency. We characterize the priority structures for which a stable

and efficient assignment always exists, as well as the priority structures which ad-

mit a stable, efficient and (group) strategy-proof rule. While house allocation and

housing market are two classical allocation problems that admit a stable, efficient

and group strategy-proof rule, any priority-augmented allocation problem with

more than three objects admits such a rule if and only if it is decomposable into a

sequence of subproblems, each of which has the house allocation or the housing

market structure.
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1 Introduction

In a priority-augmented allocation problem, each agent has a preference ordering over a set

of heterogeneous and indivisible objects and each object also comes with a priority ordering

over agents. Each agent will be assigned at most one object without monetary transfer. Com-

mon real-world applications include assigning students to public schools, faculty members to

offices, on-campus housing allocation and so on. We say an assignment respects the prior-

ities or there is no justified-envy if there is no such situation that one agent envies another’s

assignment for which the first agent has a strictly higher priority. Together with individual ra-

tionality and nonwastefulness, this fairness notion is equivalent to the stability concept in the

corresponding two-sided matching problem if priorities are interpreted as preferences of ob-

jects. As shown in Roth (1982), the man-optimal stable matching in the marriage problem is

only weakly Pareto optimal but not strongly Pareto optimal for all the men, which implies in

general stability and efficiency are not compatible in priority-augmented allocation. There-

fore, we are interested in characterizing the class of solvable problems for which a stable and

efficient rule exists.1

The answer is already known when priority orderings are strict. Gale and Shapley (1962)’s

deferred acceptance (DA) algorithm is the “best rule”: it yields the unique stable matching

that Pareto dominates any other stable matching, and it is also strategy-proof (Dubins and

Freedman, 1981, Roth, 1982). Ergin (2002) shows that DA is efficient (group strategy-proof) if

and only if the priority structure is acyclic. Thus acyclicity characterizes the priority structures

under which an efficient and stable assignment exists for any preference profile, as well as the

priority structures that admit a stable, efficient and group strategy-proof rule.2

However, indifferences in priority rankings are common in real world applications: in a

school choice problem, a student’s priority at a particular school could be only determined by

the district and sibling rule; In on-campus dormitory allocation, current residents or senior

students are usually given higher priorities than others. When ties in priorities are allowed,

acyclicity no longer guarantees the existence of a stable and efficient assignment. In this study

1We focus on characterizing priority structures in this study. Heo (2014) gives the maximal preference domain
in which stability and efficiency are compatible.

2There are several related characterizations of the strict priority structures. Kesten (2006) defines a stronger
acyclicity condition and shows that DA is equivalent to Gale’s top trading cycle if and only if the priority structure is
acyclic. Both Ergin (2002) and Kesten (2006) consider the many-to-one case (there are many copies of each object)
and in the many-to-many setting (each agent also has multi-unit demand), Kojima (2013) shows that stability is
compatible with efficiency or strategy-proofness if and only if the priority structure is essentially homogeneous.

2



we consider the allocation problem with weak priorities in the one-to-one matching context,

we show that our non-reversal condition is both necessary and sufficient for the existence of

a stable and efficient rule, but the set of priority structures that admit a stable, efficient and

strategy-proof rule is strictly smaller.3 Requiring group strategy-proofness further reduces the

“maximal domain” of priority structures, which can be characterized by strong non-reversal.

For the sufficiency parts of the characterizations we introduce the priority set rules. When a

group of agents are ranked as high as all the other agents for any object, we call them a priority

set and can conduct allocation to this priority set first without violating stability constraints. It

turns out that non-reversal imposes strong structural requirements on a subproblem induced

by the smallest priority set, which can only take one of the three forms: house allocation, hous-

ing market, and indifference at the top (IT) which is a dual structure to the housing market. In

order to select a stable and efficient assignment, serial dictatorship and top trading cycle can

be used for the first two structures, and a modified serial dictatorship algorithm is designed

for the IT structure. After agents in the smallest priority set leave the problem with their as-

signments, we find the smallest priority set of the reduced problem and repeat this process

iteratively.4

The priority set rules can elicit true preferences for the house allocation and housing mar-

ket structures, but for an IT structure with more than three agents, stable and efficient as-

signments cannot be selected through a strategy-proof rule. Moreover, when group strategy-

proofness is imposed, the IT structures are eliminated from any solvable problem if there are at

least four objects. Therefore, the two baseline allocation problems, house allocation (Hylland

and Zeckhauser, 1979) and housing market (Shapley and Scarf, 1974), are not merely special

structures that admit an efficient, stable and group strategy-proof rule. In general any priority-

augmented allocation problem admits such a rule if and only if it can be decomposed as a

sequence of subproblems with the house allocation or housing market structure during the

iteration process of the priority set rules.

Priority-augmented allocation has been studied extensively in the context of the school

choice problem, starting from Abdulkadiroğlu and Sönmez (2003). Given coarse priority rank-

3We maintain the usual assumption of strict preferences. For the allocation problem on the full preference
domain, see Bogomolnaia et al. (2005) for the house allocation problem, Ehlers (2014) for the housing market
problem.

4The idea of priority set rules is similar to the method employed in Ehlers and Westkamp (2011), where for the
same allocation problem they consider the existence of a strategy-proof constrained efficient rule. A rule is con-
strained efficient if it yields a stable assignment that cannot be Pareto dominated by any other stable assignment.
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ings, a common practice is to break the ties in priorities randomly such that DA can be applied,

but such a rule is not even constrained efficient for strong non-reversal priority structures

(Erdil and Ergin, 2008).5 6 While DA is the only constrained efficient rule under strict prior-

ities, constrained efficient assignment is in general not unique when ties are allowed. Ehlers

and Erdil (2010) shows that the constrained efficient correspondence is efficient if and only

if the priority structure is strongly acyclic, but this requirement is more stringent than strong

non-reversal.7 However, despite of the deficiencies of both DA (with fixed tiebreaking) and the

constrained efficient rule under weak priorities, a top trading cycle approach has more satis-

fying performance. We show that certain selections from the class of hierarchical exchange

rules by Pápai (2000), which are the only efficient, group strategy-proof and reallocation-proof

rules in the standard one-to-one assignment problem, can achieve stability as long as there

exists a stable, efficient and group strategy-proof rule.8 Hierarchical exchange rules general-

ize Gale’s top trading cycle algorithm and the priority set rules are equivalent to a subclass of

hierarchical exchange rules in the strong non-reversal priority domain.

In the next section we set up the model and define useful concepts. Section 3 deals with

the existence of a stable and efficient rule and Section 4 presents the results when strategy-

proofness and group strategy-proofness are imposed. Section 5 provides further discussion of

the results and then Section 6 concludes. All the proofs are contained in Appendix A.

2 Preliminaries

Let N be a finite set of agents and H a finite set of objects (houses). Each agent i ∈N has

a complete, transitive and antisymmetric preference relation Ri over H ∪{i }with Pi denoting

its asymmetric component, a house a ∈H is acceptable to i if a Pi i . Then R = (Ri )i∈N denotes

a preference profile for all the agents. Each house a ∈H has a complete and transitive prior-

5DA with fixed tiebreaking rule is currently used in many school choice programs in the U.S.. Economists
Abdulkadiroğlu, Pathak, Roth and Sönmez assisted in redesigning the school choice program and adopting the
DA algorithm with fixed tiebreaking rule in New York City (in 2003) and Boston (in 2006). See Abdulkadiroğlu
et al. (2005a) and Abdulkadiroğlu et al. (2005b).

6Erdil and Ergin (2008) gives an example of housing market structure and shows that DA with fixed tiebreaking
is not constrained efficient (indeed, a stable, efficient and group strategy-proof rule exists for such a problem
(Gale’s top trading cycle algorithm) but DA with any fixed tiebreaking is not efficient). They introduce the stable
improvement cycles algorithm, which can always select a constrained efficient assignment in polynomial-time.

7So for some priority structure that fails to satisfy strong acyclicity, not every constrained efficient assignment
is efficient, but there could exist some efficient selection from the set of constrained efficient assignments.

8Reallocation-proofness rules out the possibility that two individuals can gain by jointly manipulating the
outcome and swapping objects ex post.
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ity ordering �a over N , with �a and ∼a denoting its asymmetric and symmetric component

respectively.9 A priority structure�= (�a )a∈H is a profile of priority orderings. An assignment

or matching is a one-one functionµ : N →H ∪N such that for∀i ∈N ,µ(i ) ∈H ∪{i } . Given the

problem {N , H ,�} , a rule or mechanism is a function f that associates an assignment f (R ) to

each preference profile R .

An assignment ν Pareto dominates µ if ν(i )Riµ(i ) for all i and ν( j )Pjµ( j ) for some j ∈N ,

and an assignment µ is efficient if it cannot be Pareto dominated by any other assignment.

µ is stable if it satisfies the three following conditions: (i) respecting priorities (no justified-

envy), µ( j )Piµ(i ) implies j �µ( j ) i for all i , j ; (ii) individually rational, µ(i )Ri i for all i ; (iii)

nonwasteful, for any h ∈H , µ−1(h ) =φ implies µ(i )Ri h for all i .10

A rule f is efficient (resp., stable) if for any preference profile R , f (R ) is efficient (resp., sta-

ble). f is strategy-proof if it is a weakly dominant strategy for each agent to report true prefer-

ence in the associated preference revelation game, i.e., given any R , i and R ′i , fi (R )Ri fi (R ′i , R−i ).

f is nonbossy if no agent can change others’ assignments without affecting her own assign-

ment: given any R , i and R ′i , fi (R ) = fi (R ′i , R−i ) implies f (R ) = f (R ′i , R−i ). f is group strategy-

proof if no group of agents can jointly manipulate: given any R , there are no N ′ ⊆N , R ′N ′ such

that fi (R ′N ′ , R−N ′)Ri fi (R ) for all i ∈ N ′, and f j (R ′N ′ , R−N ′)Pj f j (R ) for some j ∈ N ′. We also have

this weaker form of group strategy-proofness: f is weakly group strategy-proof if given any

R , there are no N ′ ⊆N , R ′N ′ such that fi (R ′N ′ , R−N ′)Pi fi (R ) for all i ∈N ′.

Lemma 1 (Pápai, 2000) f is group strategy-proof if and only if f is strategy-proof and nonbossy.

When �a is antisymmetric for any a ∈ H , i.e., priorities are strict, the (agent-proposing)

deferred acceptance (DA) algorithm of Gale and Shapley (1962) yields the unique stable as-

signment that Pareto dominates any other stable assignment. DA is stable and strategy-proof,

but may not be efficient in the context of priority-augmented allocation. Ergin (2002) charac-

terizes the priority structures in which DA is efficient by an acyclicity condition.

Definition 1 A cycle consists of three agents i , j , k and two houses a , b such that i �a j �a

k �b i , and � is Ergin-acyclic if there does not exist any cycle.11

9We abuse the notation a little bit when there is no confusion: given A ⊆ N , B ⊆ N , eH ⊆ H , denote A �
eH B if

i �a j for ∀i ∈ A, j ∈ B , a ∈ eH , and similarly we can define i �a A, A �
eH B , i �

eH B and so on.
10The stability concept here is equivalent to the one in the corresponding two-sided matching problem where

priorities are interpreted as preferences of houses. Here it is assumed each house finds all the agents “acceptable”,
and respecting priorities and nonwastefulness are equivalent to “no blocking pairs”.

11The scarcity condition in the original definition is omitted here since it is always satisfied in our one-to-one
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Theorem 1 (Ergin, 2002) Given the problem {N , H ,�} , assume �a is antisymmetric for any a ∈
H . Then the following are equivalent:

(i) DA is efficient,

(ii) DA is group strategy-proof,

(iii) � is Ergin-acyclic.

Thus in the case of strict priorities, Ergin-acyclicity characterizes the priority structures in

which a stable and efficient assignment always exists, as well as the priority structures in which

a stable, efficient and group strategy-proof rule exists.

3 The existence of a stable and efficient assignment

We first consider the following motivating example from Ehlers and Erdil (2010), which

illustrates the tension between efficiency and respecting (weak) priorities.

Example 1 (Ehlers and Erdil, 2010) Suppose there are two houses a , b and three agents i , j , k .

The priority structure and preference profile are as following:

�a �b

i , j k

k i , j

Ri R j Rk

b b a

a a b

i j k

where for both a and b , i and j are ranked equally. It can be easily shown that in this

example stability induces efficiency loss. Consider any stable assignment µ, we first observe

thatµ(k ) 6= a , otherwise at least one of i and j is self-assigned and her priority for a is violated.

Secondly we must have µ(k ) = b otherwise either b is wasted or k ’s priority for b is violated.

Then a will be assigned to either i or j otherwise it is wasted. Suppose µ(i ) = a . Then clearly i

and k can exchange their assignments underµ and both would obtain their first choice. Hence

µ is not efficient, stable and efficient assignment does not exist in this example.

The priority structure here satisfies Ergin-acyclicity so we need a stronger restriction on

priorities to ensure the stability constraints will not induce welfare loss. Actually this example

setting.
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is representative: efficiency and stability are compatible as long as there does not exist such

form of priority relation.

Definition 2 A priority reversal consists of three distinct agents i , j , k and two distinct houses

a , b such that
�

i , j
	

�a k �b

�

i , j
	

. A priority structure � satisfies non-reversal if there is no

priority reversal.

Notice that non-reversal implies Ergin-acyclicity. Suppose there is a cycle i �a j �a k �b i ,

then consider j ’s priority for b . If j �b k , we have
�

j , k
	

�b i �a

�

j , k
	

. If k �b j , we have
�

i , j
	

�a k �b

�

i , j
	

. So there exists a priority reversal.

It can be easily seen from Example 1 that non-reversal is necessary for the compatibility of

efficiency and stability. For the rest of this section, we focus on constructing a rule which can

always select a stable and efficient assignment when non-reversal is satisfied. The basic strat-

egy is to decompose this allocation problem into a sequence of smaller and easier problems.

When a subset of agents are ranked as high as anyone outside this subset for all the houses,

we can allocate houses to this subset first without worrying about violation of priorities, and

once these agents leave the problem with their assignments, we can repeat this process for the

reduced problem iteratively. We define such set of agents first.

Definition 3 Given eN ⊆ N , eH ⊆ H , eN 6= φ, eH 6= φ, a nonempty set S ⊆ eN is a priority set for

the subproblem
�

eN , eH ,�
eH

	

if ∀i ∈ S , j ∈ eN \S , i �a j for all a ∈ eH and i �b j for some b ∈ eH ,

or denoted as i ��
eH j .

Lemma 2 There always exists a priority set, and if S1 and S2 are two priority sets, S1 ∩ S2 is a

priority set.

The problem is finite, so Lemma 2 implies that if we take the intersection of all the priority

sets then we can find a unique priority set with the smallest number of agents.

Definition 4 A is the smallest priority set for
�

eN , eH ,�
eH

	

if A is a priority set and for any priority

set S for
�

eN , eH ,�
eH

	

, A ⊆ S . A subproblem
�

eN , eH ,�
eH

	

is minimal if eN is the smallest priority

set for
�

eN , eH ,�
eH

	

.

It turns out that non-reversal imposes strong restrictions on the structure of a minimal

subproblem, which can only take three possible forms: each house ranks all the agents equally,
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every agent has some house that only ranks her at the top, or every agent has some house that

only puts her in the bottom.

Lemma 3 � satisfies non-reversal if and only if any minimal subproblem
�

eN , eH ,�
eH

	

satisfies

one of the following structures (let I
eH =

�

a ∈ eH : i ∼a j ∀i , j ∈ eN
	

):

(i) (House allocation) eH = I
eH ,

(ii) (Housing market) For each i ∈ eN , there exists nonemptyU (i )⊆ eH , such that for any a ∈
U (i ), i �a j for all j ∈ eN \ {i } and j ∼a k for all j , k ∈ eN \ {i } . And eH = I

eH ∪
�

∪i∈ eNU (i )
	

,

(iii) (Indifference at the Top, or IT) For each i ∈ eN , there exists nonemptyD(i )⊆ eH such that for

any a ∈D(i ), j �a i for all j ∈ eN \{i } and j ∼a k for all j , k ∈ eN \{i } . eH = I
eH∪
�

∪i∈ eND(i )
	

.12

A minimal subproblem with the house allocation structure is exactly a house allocation

problem (Hylland and Zeckhauser, 1979). Every agent is ranked equally by all the houses and

the only stability constraints in effect are individual rationality and nonwastefulness. The sim-

ple serial dictatorship is stable, efficient and group strategy-proof (Svensson, 1994, Svensson,

1999). Specifically, for a subproblem
�

eN , eH ,�
eH

	

with the house allocation structure, given R
eN

we fix an orderingσ of agents (σ :
�

1, 2, ...,
�

�
eN
�

�

	

→ eN ) and let them choose their best available

option successively according toσ, the resulting assignment is denoted as f SD (σ, R
eN ).

Before discussing the other two structures, we give an example of them when
�

�
eH
�

� = 8 and

the smallest priority set consists of four agents.

Example 2 A housing market structure:

�a �b �c �d �e � f �g �h

1 2 3 4 1234 1234 1 4

234 134 124 123 234 123

whereU (1) =
�

a , g
	

,U (2) = {b } ,U (3) = {c } ,U (4) = {d , h}, I
eH =

�

e , f
	

An IT structure:

�a �b �c �d �e � f �g �h

1234 234 134 124 123 124 124 1234

1 2 3 4 3 3

12We say a subproblem
�

eN , eH ,�
eH

	

with
�

�
eN
�

� = 1 has the house allocation structure. When � satisfies non-

reversal, a minimal subproblem
�

eN , eH ,�
eH

	

with
�

�
eN
�

� = 2 satisfies both (ii) and (iii) if it does not have the house
allocation structure, in this case we say it has the housing market structure. So an IT structure must have at least
three agents.
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whereD(1) = {b } ,D(2) = {c } ,D(3) =
�

d , f , g
	

,D(4) = {e }, I
eH = {a , h}

The housing market structure has features of both the housing market problem (Shap-

ley and Scarf, 1974) and house allocation with existing tenants (Abdulkadiroğlu and Sönmez,

1999), since each agent i can be considered to have initial endowment U (i ) but there could

also be a set of vacant houses I
eH . When there are equal number of agents and houses, a hous-

ing market structure is exactly a housing market problem. The top trading cycle mechanism

(TTC) of Abdulkadiroğlu and Sönmez (1999) can be applied to the housing market structure.13

For a subproblem
�

eN , eH ,�
eH

	

with this structure, givenσ, f T T C (σ, ·) is defined as follows:

Step 1. Denote t1 = σ(1). Let agent i ’s initial endowment be E 1
i = U (i ) for i 6= t1, and E 1

t1
=

U (t1) ∪ I
eH . Given R

eN , let agents start a top trading cycle exchange with respect to E 1: each

agent points to the owner of her favorite house (or herself if all the available houses are not

acceptable), and there exists at least one cycle since eN is finite. Let the set of agents in some

cycle be A1. Then each agent i in A1 is assigned to the house she points to (or herself), µ(i ),

and leaves the problem with her assignment.

Step k. In general, at the k t h step, let tk be the agent with the highest order among eN \∪k−1
n=1An

(according to σ), and E k
tk
= E k−1

tk
∪
�

∪i∈Ak−1

�

E k−1
i \

�

µ(i )
			

, i.e., tk inherits all the unassigned

endowments of agents in Ak−1. E k
i = E k−1

i for i ∈ eN \ ∪k−1
n=1An and i 6= tk . Then the currently

unassigned agents start top trading cycle exchange with respect to E k : each agent points to

the owner of her best available option, let the set of agents in some cycle be Ak , each agent i

in Ak is assigned to the house she points to (µ(i )) and leaves the problem.

The algorithm terminates when all the agents are assigned, f T T C (σ, R
eN ) =µ.

TTC belongs to the family of hierarchical exchange rules of Pápai (2000) which are always

efficient and group strategy-proof. It is also stable since each agent i is guaranteed to obtain a

house weakly better than her initial endowmentU (i ).
The last case to consider is the IT structure. It is symmetric to the housing market struc-

ture and we first introduce a stable and efficient rule, the priority-based serial dictatorship

(PBSD). PBSD is a multiple-round serial dictatorship algorithm and starts with asking agents

to pick their best available option sequentially according to some fixed ordering, but in order

to satisfy stability constraint we only allow an agent to pick her best available option if she

is not ranked the lowest by this option, otherwise the agent has to wait for the next round of

13The only modification needed is to allow an agent to be endowed with more than one house.
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serial dictatorship. If at some point all the (remaining) agents are ranked the lowest by their

best available option, the IT structure implies that every agent must have a different target

and thus they can be assigned simultaneously. Formally, given σ, f P BSD (σ, ·) for a subprob-

lem
�

eN , eH ,�
eH

	

with the IT structure is defined as follows:

Given R
eN , for S ⊆ eH , i ∈ eN denote bi (S ) as agent i ’s best choice in S ∪{i } according to Ri .

Step 1. Denote the sequence of agents {σ(m )}|
eN |

m=1 as
�

t 1
m

	n

m=1
(so let

�

�
eN
�

� = n) and eH = eH1.

If bi ( eH1) ∈ D(i ) for all i ∈ eN , let µ1(i ) = bi ( eH1) for i ∈ eN , otherwise we use the following se-

rial dictatorship. If bt 1
1
( eH1) /∈ D(t 1

1 ), let µ1(t 1
1 ) = bt 1

1
( eH1), otherwise let µ1(t 1

1 ) = 0 (agent t 1
1

is tentatively assigned to a null object). Next consider t 1
2 : let µ1(t 1

2 ) = bt 1
2
( eH1 \

�

µ1(t 1
1 )
	

) if

bt 1
2
( eH1 \

�

µ1(t 1
1 )
	

) /∈D(t 1
2 ), otherwise let µ1(t 1

2 ) = 0. Continue in this fashion till the last agent is

assigned: µ1(t 1
n ) = bt 1

n
( eH1\∪n−1

m=1

�

µ1(t 1
m )
	

) if bt 1
n
( eH1\∪n−1

m=1

�

µ1(t 1
m )
	

) /∈D(t 1
n ), otherwiseµ1(t 1

n ) = 0.

Let B1 =
�

i ∈ eN :µ1(i ) 6= 0
	

.

Step k . In general, at the k t h step denote the subsequence of
�

t 1
m

	n

m=1
after agents in ∪k−1

m=1Bm

are removed as
�

t k
m

	n−|∪k−1
m=1Bm |

m=1
and eHk = eH \∪k−1

m=1µm (Bm ). If bi ( eHk ) ∈D(i ) for all i ∈ eN \∪k−1
m=1Bm ,

let µk (i ) = bi ( eHk ) for i ∈ eN \ ∪k−1
m=1Bm , otherwise we run the following serial dictatorship: let

µk (t k
1 ) = bt k

1
( eHk ) if bt k

1
( eHk ) /∈D(t k

1 ),µk (t k
1 ) = 0 otherwise, continue until the last agent t k

n−|∪k−1
m=1Bm |

is assigned (for the k t h time). Let Bk =
�

i ∈ eN \∪k−1
m=1Bm :µk (i ) 6= 0

	

.

The algorithm terminates when each agent is assigned to a house or herself, which takes at

most mi n{
�

�
eN
�

� ,
�

�
eH
�

�} steps, the resulting assignment is f P BSD (σ, R
eN ) such that f P BSD

i (σ, R
eN ) =

µk (i ) if i ∈ Bk .

Similar to the case of serial dictatorship for the house allocation problem, PBSD can give

all the efficient and stable assignments for an IT structure problem:

Lemma 4 For a subproblem
�

eN , eH ,�
eH

	

with the IT structure, f P BSD (σ, ·) is stable and efficient

for anyσ. Moreover, for any R
eN , ifµ is stable and efficient, there existsσ such that f P BSD (σ, R

eN ) =

µ.

Now there are three stable and efficient rules to deal with the three possible structures, we

are ready to combine them and describe a stable and efficient rule for the problem {N , H ,�}
where � satisfies non-reversal. Given an ordering of agents σ and a preference profile R , the

priority set rule f � determines the allocation as following.

Step 1. Find the smallest priority set N1 for {N , H ,�}. By Lemma 3,
�

N1, H =H1,�H1

	

can only

10



take three possible structures. Use f SD if it is the house allocation structure, f T T C if it is the

housing market structure, f P BSD if it is the IT structure.14 The resulting assignment isµ1 : N1→
H1 ∪N1.

Step k . In general, at the k t h step, find the smallest priority set Nk for the reduced problem
�

Nk =N \∪k−1
m=1Nm , Hk =H \∪k−1

m=1µm (Nm ),�Hk

	

, use f SD , f T T C and f P BSD according to the struc-

ture of
�

Nk , Hk ,�Hk

	

and the resulting matching is µk : Nk →Hk ∪Nk .

The process terminates when every agent is assigned, which takes at most mi n{|N | , |H |} steps.

The resulting assignment is f �(σ, R )where f �i (σ, R ) =µk (i ) if i ∈Nk .

Proposition 1 Suppose � satisfies non-reversal. f �(σ, ·) is stable and efficient for anyσ.

So we have finished the sufficiency part of the first characterization result.

Theorem 2 Given {N , H ,�} , there exists a stable and efficient assignment for any R if and only

if � satisfies non-reversal.

4 Strategy-proof assignment

It can be readily seen that in general agents can manipulate PBSD thus the priority set

rules are not strategy-proof. Consider an IT structure with three agents 1, 2, 3 and three houses

a , b , c where a ∈ D(1), b ∈ D(2), c ∈ D(3) and preferences are a R1b R11, b R2a R22, a R33. If

σ(i ) = i then f P BSD
2 (σ, R ) = 2. But agent 2 would get house a by asserting this is her top choice.

Unfortunately, as shown in Theorem 3 for an IT structure with more than three agents,

although an efficient and stable assignment always exists, there is no strategy-proof way of se-

lecting such assignment. But for the case of three agents, DA with a preference-based tiebreak-

ing rule due to Ehlers (2007) is stable, efficient and weakly group strategy-proof. Thus the pri-

ority set rules can be modified to include such DA algorithm as solution to IT structure with

three agents instead of PBSD, and such modified priority set rules are weakly group strategy-

proof on a smaller priority domain than the non-reversal one.

Theorem 3 Given {N , H ,�} , the following are equivalent:

(i) there exists a stable, efficient and strategy-proof rule,

14At each step, serial dictatorship, TTC and PBSD are implemented with respect to (a restriction of)σ.
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(ii) there exists a stable, efficient and weakly group strategy-proof rule,

(iii) any minimal subproblem has one of the three structures: (1) house allocation, (2) housing

market, (3) IT with three agents.

Finally, we consider the stronger notion of group strategy-proofness. For the special three-

agent and three-house IT case, DA with the preference-based tiebreaking is group strategy-

proof (Ehlers, 2007).15 16 As shown in Theorem 4, another impossibility result is that for an IT

structure with more than three houses, any stable and efficient rule is not group strategy-proof,

which suggests the “maximal domain” of priority structures is shrinking further. Recall by def-

inition an IT structure consists of at least three houses, so if there are at least four houses and a

subproblem with the IT structure exists, non-reversal implies there also exists an IT structure

with four houses. Hence this structure is eliminated from any solvable problem when group

strategy-proofness is required and |H |> 3.

Definition 5 A weak priority reversal consists of three distinct agents
�

i , j , k
	

⊆N , and some

houses {a , b , c } ⊆H such that
�

i , j
	

�a k , and k �b i , k �c j . � satisfies strong non-reversal if

there is no weak priority reversal.

Ehlers and Erdil (2010) shows that the constrained efficient correspondence is efficient if

and only if the priority structure satisfies strong acyclicity, which is defined as there are no

distinct
�

i , j , k
	

⊆ N and {a , b } ⊆ H such that i �a j �a k �b i . As mentioned before, it is

stronger than strong non-reversal. It can also be easily seen that under strict priorities, strong

acyclicity, strong non-reversal and non-reversal are all equivalent to Ergin-acyclicity.

Strong non-reversal rules out the IT structure and implies any minimal subproblem is ei-

ther a house allocation structure or a housing market structure. In light of Lemma 1, the group

strategy-proofness of the priority set rules f � for a strong non-reversal problem follows directly

from the group strategy-proofness of serial dictatorship and TTC.

Theorem 4 Given {N , H ,�} , |H |> 3, the following are equivalent:

(i) there exists a stable, efficient and group strategy-proof rule,

15It can also be shown that in this case such DA algorithm is the only rule that satisfies stability, efficiency and
group strategy-proofness.

16 Therefore, it can be easily seen that when |H | < 4, non-reversal is necessary and sufficient for the existence

of a stable, efficient and group strategy-proof rule.
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(ii) any minimal subproblem has the house allocation or the housing market structure,

(iii) � satisfies strong non-reversal.

In the one-to-one matching context, some previously known problems that admit a stable,

efficient and group strategy-proof rule include house allocation, housing market, house allo-

cation with existing tenants, and also the priority-augmented allocation problem with a strict

and Ergin-acyclic priority structure. They all fall into the strong non-reversal priority domain.

Furthermore, it can be easily verified that f � is reduced to serial dictatorship in house alloca-

tion, Gale’s top trading cycle in housing market, the top trading cycle mechanism of Abdulka-

diroğlu and Sönmez (1999) in house allocation with existing tenants, and the DA algorithm in

a priority-augmented allocation problem with a strict and Ergin-acyclic priority structure.17

While house allocation and housing market are two classical assignment problems that ad-

mit a stable, efficient and group strategy-proof rule, Theorem 4 implies that a partial converse

is also true: given any priority-augmented allocation problem (with more than three houses),

such rule exists only if it can be decomposed as a sequence of subproblems defined by smallest

priority sets, and each of them has either the house allocation or housing market structure. A

housing market structure is not exactly a housing market problem which features equal num-

ber of houses and agents, the following corollary reinterprets Theorem 4 and provides a tighter

connection to these two classical problems.

Corollary 1 Suppose |H |> 3. There exists a stable, efficient and group strategy-proof rule if and

only if any minimal subproblem
�

eN , eH ,�
eH

	

with
�

�
eN
�

�=
�

�
eH
�

� is either a house allocation problem

or a housing market problem.

5 Discussion

5.1 A characterization of weak non-reversal

Ehlers and Westkamp (2011) consider the same allocation problem and provide a par-

tial characterization of the structures under which there exists a strategy-proof constrained

efficient rule. They provide three necessary conditions and the first one is an acyclicity con-

dition: A tie i1 ∼o i2 between two distinct agents i1, i2 is strongly cyclic, if there exist agents

17Equivalence to DA is due to the uniqueness of the stable and efficient assignment in this case.
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j1, j2 ∈ N \ {i1, i2} and objects p1, p2 such that either i1 �p1
j1 �o i1 and i2 �p2

j2 �o i2, with

p1 = p2 if j1 = j2, or {i1, i2} �p1
j1 �p2

j2 �o i1. A weak priority structure � is EW-acyclic if it does

not contain a strongly cyclic tie. This new notion helps establish a characterization of weak

non-reversal:

Proposition 2 A priority structure � satisfies weak non-reversal if and only if it is Ergin-acyclic

and EW-acyclic.

Therefore, for those Ergin-acyclic but not weak non-reversal priority structures, there does

not exist a stable and efficient rule, nor do they admit a strategy-proof constrained efficient

rule.

5.2 The priority set rules and the hierarchical exchange rules

When any minimal subproblem has either the house allocation or housing market struc-

ture, the iterative procedure of finding the smallest priority set and applying serial dictatorship

or TTC is essentially a hierarchical exchange. The hierarchical exchange rules of Pápai (2000)

generalize Gale’s top trading cycle algorithm by allowing endowment sets to be hierarchically

determined by the inheritance trees. For each object a ∈H , an inheritance tree Γa = (V ,Q ) is a

rooted tree where V is the set of vertices and Q ⊂V ×V is the set of arcs. Each vertex is labeled

by an agent and each arc is labeled by an object other than a .18 Γa shows how a is inherited

and such inheritance can endogenously depend on previous assignments of agents. Given a

list of inheritance trees Γ = (Γa )a∈H , the associated hierarchical exchange rule f Γ determines

the allocation through top trading cycles with respect to Γ .

Proposition 3 Suppose |H | > 3. If � satisfies strong non-reversal then for any σ, there exists Γ

such that f �(σ, ·) = f Γ . Thus there exists a stable hierarchical exchange rule if and only if �
satisfies strong non-reversal.

Intuitively the hierarchical exchange rules can accommodate some exogenous priorities or

property rights by specifying proper inheritance trees, Proposition 3 shows formally when an

exogenous priority structure can be respected. Hierarchical exchange rules are always efficient

and group strategy-proof, and a stable one exists as long as there exists a stable, efficient and

18For ease of exposition in this subsection we assume all the objects are acceptable for each agent.
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group strategy-proof rule. This result also suggests the top trading cycle procedure could have

superior stability property when efficiency and incentive compatibility are the main concerns.

In the same vein, Morrill (2013) shows that in the one-to-one strict priority case, Gale’s top

trading cycle algorithm is the “most stable” one among the class of efficient and strategy-proof

rules.19

6 Conclusion

We considered a generalized house allocation model and searched for solvable problems

in terms of stability and efficiency. When group strategy-proofness is further required, solv-

able problems feature a decomposition into two extensively studied allocation problems, one

with social endowment and one with private endowments. The priority set technique greatly

simplifies our analysis and helps establish connections to a subclass of hierarchical exchange

rules. In practice, mechanisms are designed for resource allocation problems, priority struc-

ture can also be designed, and identifying solvable problems could benefit both design issues.

An interesting direction for future study would be to generalize our results to the case of many-

to-one matching. When multiple copies of each object are allowed and thus resources are less

scarce, necessarily more priority structures become admissible. Although the decomposition

result may no longer hold, similar characterizations could be established to contribute to a

larger class of market design problems including school choice.

Appendix A

Proof of Lemma 2. Given
�

eN , eH ,�
eH

	

, by definition eN is a priority set. For any two priority sets

S1 and S2, S1 ∩S2 6=φ otherwise there exists some i ∈ S1, j ∈ S2 such that i ��
eH j and j ��

eH i ,

contradiction. For any k ∈ S1∩S2 and l /∈ S1∩S2, l /∈ S1 or l /∈ S2, so k ��
eH l , this shows S1∩S2 is

a priority set. �

Proof of Lemma 3. “if” part. Suppose any minimal subproblem satisfies one of the three

structures. Assume to the contrary there exists a priority reversal
�

i , j
	

�a k �b

�

i , j
	

. Then

19Specifically, he proposes a weaker form of stability concept called justness, and shows that top trading cycle
is the only just, efficient and strategy-proof rule. Thus any efficient and strategy-proof rule satisfies justness or a
stronger stability concept is the top trading cycle algorithm.
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�

eN =
�

i , j , k
	

, eH = {a , b } ,�{a ,b }
	

is minimal and is not a house allocation, housing market or

IT structure, contradiction.

For the other direction of the proof we first show the following claim.

Claim 1 If
�

eN , eH ,�
eH

	

is minimal and� satisfies non-reversal, then (i ) there does not exist i , j ∈
eN such that i ��

eH j , (i i ) there does not exist a ∈ eH and i , j , k ∈ eN such that i �a j �a k .

Proof of Claim 1. Part (i ). Assume to the contrary, there exist agents 1, 2 ∈ eN such that 1��
eH 2.

Let G1 =
�

i ∈ eN : i ��
eH 2
	

,G2 = eN \G1, then 1 ∈G1, 2 ∈G2.

For any k ∈G2, either k ∼ a 2 for all a ∈ eH or there exists some a such that 2�a k . If k ∼ a 2

for all a then G1 �� eH k . If there exists some a ∈ eH such that 2 �a k , then there does not exist

some i ∈ G1 and b ∈ eH such that k �b i , otherwise we have k �b {i , 2} and {i , 2} �a k and

this is a priority reversal, so G1 � eH k . Then 2 �a k implies G1 �a k , thus G1 �� eH k . This shows

G1 �� eH G2, G1 is a strictly smaller priority set than eN , contradiction.

Part (i i ). If there exist a ∈ eH and i , j , k ∈ eN such that i �a j �a k , then by Ergin-acyclicity

i ��
eH k , contradiction. �

“only if” part. Suppose � satisfies non-reversal. For each a ∈ eH , partition eN into disjoint

nonempty subsets A1
a , A2

a ...Am
a , such that ∪m

n=1An
a = eN and A1

a �a A2
a �a ...�a Am

a , and i ∼a j for

any i , j ∈ An
a . Let A1

a = eN if i ∼a j for all i , j ∈ eN . By Claim 1 m = 1 or 2 for any a ∈ eH .

If for some a , A1
a 6= φ, A2

a 6= φ, then we cannot have
�

�A1
a

�

� ¾ 2 and
�

�A2
a

�

� ¾ 2. Suppose this is

not true. Then without loss of generality let {1, 2} ⊆ A1
a , {3, 4} ⊆ A2

a . By Claim 1 ∃b ∈ eH such that

3 �b 1, so 3 ∈ A1
b , 1 ∈ A2

b , then non-reversal implies 2 ∈ A1
b , 4 ∈ A2

b . Also ∃c such that 4 �c 2, so

4 ∈ A1
c , 2 ∈ A2

c , then since {1, 2} �a 4, non-reversal implies 1 ∈ A1
c . Thus {1, 4} �c 2 and 2�b {1, 4} ,

this is a priority reversal and we reach a contradiction.

If A2
a =φ for all a ∈ eH , then we have the house allocation structure.

If for some a ∈ eH , A2
a 6=φ and

�

�A2
a

�

�¾ 2, then
�

�A1
a

�

�= 1. Suppose i ∈ A1
a then a ∈U (i ) 6=φ. For

any j 6= i , by Claim 1 there exists some b such that j �b i thus j ∈ A1
b , i ∈ A2

b , then non-reversal

implies ∀k ∈ eN \
�

i , j
	

, k ∈ A2
b , thus b ∈ U ( j ) 6= φ. Now suppose for some c ∈ eH , c /∈ U (i )

for any i ∈ eN , and c /∈ I
eH , then

�

�A1
c

�

� ¾ 2, A2
c 6= φ. Let

�

i , j
	

⊆ A1
c , k ∈ A2

c , then
�

i , j
	

�c k and

k �d

�

i , j
	

for some d ∈ U (k ), which is a priority reversal, contradiction. Hence we have the

housing market structure.

If for some a ∈ eH , A2
a 6=φ, and

�

�A2
a

�

�= 1 then we have the IT structure and the proof is similar

to the last case. �
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Proof of Lemma 4. We will use the fact that given anyσ, serial dictatorship is efficient, and for

any R
eN and an efficient µ, there existsσ such that f SD (σ, R

eN ) =µ.

First part. Given any R
eN and σ, suppose the PBSD algorithm terminates at step M , so eN =

∪M
k=1Bk . Let B0 = φ. Construct σ̂ such that

�

σ̂(k ) : k ∈
�

(
∑m−1

l=0 |Bl |) +1,
∑m

l=0 |Bl |
�	

= Bm , m =

1, 2, ..., M , and σ̂−1(i )< σ̂−1( j ) ifσ−1(i )<σ−1( j ) for i , j ∈ Bm , m = 1, 2, ..., M . Then f SD (σ̂, R
eN ) =

f P BSD (σ, R
eN ), so f P BSD (σ, R

eN ) is efficient, individually rational and nonwasteful. Priorities

cannot be violated since for any i , j ∈ eN , j � f P BSD
i (σ,R

eN )
i implies i ∈ BM and thus j does not

envy i .

Second part. Efficiency of µ implies there exists σ such that f SD (σ,R
eN ) = µ. Construct σ̂ in

the following way. Let
�

σ̂(k ) : k ∈
�

1,
�

�

�

i :µ(i ) /∈D(i )
	�

�

�	

=
�

i :µ(i ) /∈D(i )
	

= B1.
�

σ̂(k ) : k ∈
��

�

�

i :µ(i ) /∈D(i )
	�

�+1,
�

�
eN
�

�

�	

=
�

i :µ(i ) ∈D(i )
	

= B2, σ̂−1(i )< σ̂−1( j ) ifσ−1(i )<σ−1( j )

for i , j ∈ B1 or i , j ∈ B2.

For any i ∈ B1, her choice set is larger under σ̂ (compared to σ) when it is her turn to

choose house so f SD
i (σ̂, R

eN )Riµ(i ). Moreover, ∀ j ∈ B2, B1 �µ( j ) j , so stability of µ implies ∀i ∈
B1, f SD

i (σ̂, R
eN )Riµ(i )Riµ( j ), then f SD

i (σ̂, R
eN ) 6= µ( j ). Clearly any agent in B2 is not worse off

under σ̂ thus efficiency ofµ implies f SD (σ̂, R
eN ) =µ. By the construction of σ̂ serial dictatorship

and PBSD coincide so f P BSD (σ̂, R
eN ) = f SD (σ̂, R

eN ) =µ. �

Proof of Proposition 1. Efficiency. serial dictatorship, TTC and PBSD are efficient, so given R ,

each µk is efficient for
�

Nk , Hk ,�Hk
, RNk

	

, then for each k there exists σ̂k : {1, 2, ..., |Nk |} → Nk

such that f SD (σ̂k , RNk
) = µk . Construct σ̂ : {1, 2, ..., |N |} → N such that (i ) σ̂−1(i ) < σ̂−1( j ) if

i ∈ Ns , j ∈ Nt , s < t ; (i i ) σ̂−1(i ) < σ̂−1( j ) if i , j ∈ Nk for some k and σ̂−1
k (i ) < σ̂

−1
k ( j ). Then

f �(σ, R ) = f SD (σ̂, R ), f �(σ, R ) is efficient.

Stability. For any k , if
�

Nk , Hk ,�Hk

	

has the housing market structure, then µk is individually

rational since agents do not point to unacceptable houses and nonwasteful since it is efficient.

It respects priorities since if for some i , j ∈Nk , j �µk (i ) i , i either inherits µk (i ) from j or points

to j in a cycle, hence µk ( j )R jµk (i ). So combined with the stability of serial dictatorship and

PBSD, eachµk is stable for
�

Nk , Hk ,�Hk
, RNk

	

. f � is individually rational and nonwasteful since

f �(σ, R ) = f SD (σ̂, R ). Suppose for some i , j ∈ N , j � f �i (σ,R ) i , then f �j (σ, R )R j f �i (σ, R ) if i , j ∈
Nk for some k , by the stability of µk . If i ∈ Ns , j ∈ Nt and s 6= t then t < s , nonwastefulness

of µt implies f �j (σ, R )R j f �i (σ, R ). This shows priorities cannot be violated, hence f �(σ, R ) is

stable. �

Proof of Theorem 2. “if part” follows directly from Proposition 1.
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“only if” part. Suppose there exists a priority reversal
�

i , j
	

�a k �b

�

i , j
	

. Consider the fol-

lowing preference profile R :

Ri : b Ri a Ri i Ri ; R j : b R j a R j j R j ; Rk : a Rk b Rk k Rk ; Rl : l Rl h , ∀l ∈N \
�

i , j , k
	

, ∀h ∈H .

Suppose µ is a stable assignment, then µ(l ) = l for all l ∈ N \
�

i , j , k
	

, and by the same

argument in Example 1, µ(k ) = b , and either µ(i ) = a or µ( j ) = a , so µ is inefficient. Thus there

does not exist a stable and efficient assignment for R . �

Proof of Theorem 3. (ii)⇒ (i) is trivial. (i)⇒ (iii). Suppose there exists a stable, efficient and

strategy-proof rule f , but there exists a minimal subproblem that does not have one of the

three structures. Then by Theorem 2 and Lemma 3 there exists a minimal subproblem with IT

structure and more than three agents. It is sufficient to consider a four-agent IT problem
�

eN =
�

i , j , k , l
	

, eH = {a , b , c , d } ,�
eH

	

only, since it can be assumed that mRm h for all m /∈
�

i , j , k , l
	

, h ∈ H , then f (m ) = m . Let a ∈ D(l ), b ∈ D(i ), c ∈ D( j ), d ∈ D(k ). Construct the

following preferences:

Rl : a Rl b Rl c Rl d Rl l , R ′l : b R ′l a R ′l c R ′l d R ′l l ,

Ri : b Ri c Ri a Ri i , R j : c R j b R j d R j j ,

Rk : d Rk c Rk b Rk a Rk k , R ′k : c R ′k d R ′k b R ′k a R ′k k .

And consider the following three preference profiles:

R 1 =
�

Rl , Ri , R j , R ′k
�

R 2 =
�

R ′l , Ri , R j , R ′k
�

R 3 =
�

R ′l , Ri , R j , R k

�

For anyσ, ( f P BSD
l (σ, R 1), f P BSD

i (σ, R 1), f P BSD
j (σ, R 1), f P BSD

k (σ, R 1)) = (d , a , b , c ). By Lemma

4 this is the unique stable and efficient assignment for R 1, so
�

fl (R 1), fi (R 1), f j (R 1), fk (R 1)
�

=

(d , a , b , c ). Strategy-proofness requires fl (R 2) = d , then stability and efficiency implies f (R 1) =

f (R 2).

Now consider R 3, again there exists a unique stable and efficient assignment thus we have
�

fl (R 3), fi (R 3), f j (R 3), fk (R 3)
�

= (b , c , d , a ). But this shows that fk (R ′k , R 3
−k )P k fk (R 3), contradict-

ing to f being strategy-proof.

(iii)⇒ (ii). It is sufficient to show there exists a stable, efficient and weakly group strategy-

proof rule for an IT structure with three agents so that we can combine this rule with serial

dictatorship and TTC to obtain a modified priority set rule which obviously also satisfies these

three axioms. For a minimal subproblem
�

eN , eH ,�
eH

	

with the IT structure and
�

�
eN
�

� = 3, de-

fine the following D-tiebreaking rule for the deferred acceptance algorithm with respect to
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an ordering of agentsσ:

(i) If there is a tie between two agents i and j , and k is on the waiting list of some other house,

then reject i if k is on the waiting list of some a ∈D(i ), reject j if k is on the waiting list of some

a ∈D( j ), break the tie according toσ otherwise.

(ii) If the three agents apply to some a /∈ I
eH at the same time, reject one agent based on strict

priority first and let the rejected agent apply to her next choice, then break the tie between the

other two agents according to (i ). Similarly, if there is a tie among three agents, reject one agent

first according to σ and let the rejected agent apply to her next choice, break the tie between

the other two agents according to (i ).

The DA algorithm with such tiebreaking rule is denoted as f D A(D)(σ, ·). With respect to σ

and a preference profile R
eN , define a binary relation q on the three agents: i1q i2 if at some

step of f D A(D) some house h rejects i2 in favor of i1 while i3 is on the waiting list of some other

house. By the D-tiebreaking rule, it can be easily seen that q is asymmetric and q-acyclicity is

satisfied: we do not have three agents j1, j2 and j3 such that j1q j2q j3q j1.

By construction f D A(D) always preserves stability. Given R
eN , for any i ∈ eN let ai , bi , ci de-

note agent i ′s top three choices in eH ∪ {i } . Let eN =
�

i , j , k
	

and f D A(D)(σ, R
eN ) = µ. We now

show µ is efficient and no one has an incentive to misrepresent preference at the arbitrary

preference profile R
eN . For simplicity we use q to denote the binary relation with respect to R

eN

while eq is with respect to a manipulated preference profile under consideration.20

Case 1.
�

�

�

ai , a j , ak

	�

� = 3. Every agent is assigned her first choice so µ is efficient and no one

has an incentive to misrepresent preference.

Case 2. ai = a j 6= ak . Without loss of generality, suppose ai rejects j , then q -acyclicity implies

µ(i ) = ai and at least one of j and k is assigned her second choice, soµ is efficient. Clearly i has

no incentive to misrepresent preference. If b j 6= ak then µ(k ) = ak and only j could potentially

manipulate to obtain her first choice ai . j cannot be assigned ai by first applying to any house

other than ak , or first applying to ak and getting rejected. If j first applies to ak and j eq k then

q -acyclicity implies µ( j ) = ak so such manipulation cannot be successful.

If b j = ak and k q j then µ(k ) = ak and µ( j ) = c j . j will always be rejected by her first two

choices for any reported preference.

20Obviously f D A(D) is strategy-proof and efficient if for some i ′ ∈ eN , ai ′ = i ′. We restrict attention to the case
where ai ′ ∈ eH for all i ′ in eN .
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If b j = ak and j q k by q -acyclicity µ( j ) = b j ,µ(k ) /∈
�

ai , b j

	

. j cannot obtain ai no mat-

ter which house she applies to first. We now consider k ’s incentive. There are two potentially

successful manipulation strategies for k : applying to a house h /∈
�

ai , b j

	

first to change the

tiebreaking between i and j (if indeed i ∼ai
j and i q j under true preference profile) and “pool-

ing” with i , j : applying to ai first. Suppose the first manipulation strategy is successful, then

i ∼ai
j , and j eq i , i eq k , thus h ∈ I

eH ∪D (k ), andσ−1( j )<σ−1(i ). From i q j we have b j ∈D ( j ), but

this contradicts to j q k . Now assume the second manipulation strategy is successful, all the

three agents apply to ai first, k cannot be the first rejected agent. If i is the first rejected agent,

then ai ∈ I
eH ,σ−1( j ) < σ−1(i ). So i q j implies b j ∈ D ( j ), contradicting to j q k . If j is the first

rejected agent, i must be the second rejected agent, this implies i ∼ai
k and b j /∈ D (k ). Then

j q k implies j ∼b j
k , and ai /∈D ( j ), then ai ∈ I

eH , thusσ−1( j )<σ−1(k ), contradicting to j q k .

Case 3. ai = a j = ak . Without loss of generality suppose k is the first rejected agent and j is the

second rejected agent, then µ(i ) = i , at least one of j and k is assigned her second choice thus

µ is efficient. q -acyclicity implies j and k can never obtain ai by applying to any house first.

So we are only left to show if j or k is assigned her third choice (so b j = bk ) then she cannot

manipulate to obtain second choice. If µ(k ) = ck , the only potential manipulation strategy

for k is to apply to some house h /∈ {ai , bk} first to change the tiebreaking between i and j ,

and by the same argument in case 2 such strategy cannot be successful. If µ( j ) = c j , similarly

the only possible manipulation for j is through applying to some house h 6= ai first to change

the tiebreaking between i and k . If such manipulation is successful then ai ∈ I
eH and σ−1(i ) <

σ−1(k ),σ−1( j ) < σ−1(k ), thus h ∈ D (i ) and then j is assigned h = b j∈D (i ), contradicting to

k q j .

Finally we show f D A(D) is weakly group strategy-proof. It is enough to consider the case

ai = a j and i q j , j q k so µ(i ) = ai ,µ( j ) = b j ,µ(k ) ∈ {bk , ck} . So either ak 6= ai or ak = ai and k

is the first rejected agent. Suppose j and k can jointly manipulate such that both are strictly

better-off, then j is assigned ai , so i ∼ai
j and σ−1(i ) < σ−1( j ). q -acyclicity implies j must

apply to ai first. For j to be assigned ai ,k can either apply to ai first, be the first rejected agent

and apply to h ∈D (i ) next to influence the tiebreaking between i and j , or by simply applying

to h first. But under such joint manipulation k is assigned h and cannot be strictly better-off.

�

Proof of Theorem 4. (iii)⇒ (i). When� satisfies strong non-reversal, any minimal subproblem

has either the house allocation structure or the housing market structure. Both serial dictator-
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ship and TTC are strategy-proof and nonbossy, it follows that f � is strategy-proof and non-

bossy, hence group strategy-proof by Lemma 1. f � is also stable and efficient by Proposition

1.

(ii)⇒ (iii). Given (i i ), by Lemma 3 � satisfies non-reversal. Suppose � does not satisfy strong

non-reversal, then there exists three distinct agents and three distinct houses such that
�

i , j
	

�a

k , k �b i , k �c j . Non-reversal implies
�

eN =
�

i , j , k
	

, eH = {a , b , c } ,�
eH

	

is a minimal subprob-

lem with the IT structure, contradiction.

(i)⇒ (ii). Suppose there exists a stable, efficient and group strategy-proof rule f . Assume (i i )

is not true, then by Theorem 3 there exists a minimal subproblem
�

eN = {1, 2, 3} , eH = {a , b , c } ,�
eH

	

with the IT structure and three agents. Suppose a ∈ D(1), b ∈
D(2), c ∈D(3). Since |H |> 3, there exists some d /∈ {a , b , c } and
�

eN = {1, 2, 3} , eH = {a , b , c , d } ,�
eH

	

must be also a minimal subproblem with the IT structure.

It is sufficient to consider this subproblem only. There are two cases:

Case 1. d ∈D(i ) for some i . Without loss of generality, suppose d ∈D(3).
The following result, from Lemma 1 of Svensson (1999), will be helpful.

Claim 2 (Svensson, 1999). A rule f is group strategy-proof if and only if for any two preference

profiles R , R ′ such that for any i ∈N , a ∈H ∪{i } , fi (R )Ri a implies fi (R )R ′i a , then f (R ) = f (R ′).

By Lemma 4, f (c , d | c , d | d , a ) ∈ {(c , d , a ), (d , c , a )} .21 First we want to show f (c , d | c , d |
d , a ) = (d , c , a ). Again, by Lemma 4 f (a , c , b | c , a | c , a ) = (b , c , a ), by Claim 2 f (c , a , b | c , d |
c , a ) = (b , c , a ). So if f (c , d | c , d | d , a ) = (c , d , a ), then given true preference profile (c , a , b |
c , a | c , a ) agent 1 and 3 can jointly manipulate and agent 1 will be strictly better-off. Thus

f (c , d | c , d | d , a ) = (d , c , a ). By a symmetric argument, we can show f (c , d | c , d | d , b ) =

(c , d , b ).

Given f (c , d | c , d | d , a ) = (d , c , a ), strategy-proofness and efficiency imply f (c , 1 | c , d |
d , a ) = (1, c , d ), then by Claim 2 f (c , 1 | c , 2 | d , 3) = (1, c , d ). By a symmetric argument we can

show f (c , d | c , d | d , b ) = (c , d , b ) implies f (c , 1 | c , 2 | d , 3) = (c , 2, d ), contradiction.

Case 2. d ∈ I
eH , i.e., 1∼d 2∼d 3.

By Lemma 4, f (a , d , b | d , a | d , a ) ∈ {(b , d , a ), (b , a , d )} , then strategy-proofness and effi-

ciency imply f (d , a , b | d , a | d , a ) ∈ {(b , d , a ), (b , a , d )} .

Step 1. f (d , a , b | d , a | d , a ) = (b , d , a ) implies f (d , b | d , b , a | d , b ) = (d , a , b ).

21For simplicity we denote f (R1 : c R1d ; R2 : c R2d ; R3 : d R3a ) as f (c , d | c , d | d , a ), and irrelevant preference
rankings of houses are not listed.
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By Claim 2, f (| d , a , b | d , a | d , a ) = (b , d , a )⇒ f (d , b , a | d , b , a | d , a , b ) = (b , d , a ), then

strategy-proofness implies f3(d , b , a | d , b , a | d , b , a ) 6= d . Since by Lemma 4 f2(d , b , a | b , d , a |
d , b , a ) = a , then f2(d , b , a | d , b , a | d , b , a ) = a , combined with f3(d , b , a | d , b , a | d , b , a ) 6= d

we have f (d , b , a | d , b , a | d , b , a ) = (d , a , b ) by efficiency. It follows that f (d , b | d , b , a |
d , b ) = (d , a , b ).

Step 2. f (d , a , b | d , a | d , a ) = (b , d , a ) is not possible.

Assume to the contrary f (d , a , b | d , a | d , a ) = (b , d , a ), then by Claim 2 f (d , a , b | d , c |
d , a ) = (b , d , a ), then f3(d , a , b | d , c | d , c , a ) ∈ {c , a } . If f3(d , a , b | d , c | d , c , a ) = a , then

nonbossiness implies f (d , a , b | d , c | d , c , a ) = (b , d , a ), nonwastefulness is violated. Thus

f3(d , a , b | d , c , 2 | d , c , a ) = c . Since 2�c 3, stability implies f2(d , a , b | d , c | d , c , a ) = d . So we

have f (d , a , b | d , c | d , c , a ) = (a , d , c ), then clearly f (d , a , b | d , b | d , c , a ) = (a , d , c ).

By step 1 f (d , b | d , b , a | d , b ) = (d , a , b ). By a similar argument, f (d , b | d , b , a | d , b ) =

(d , a , b ) ⇒ f (d , c | d , b , a | d , b ) = (d , a , b ) ⇒ f (d , c | d , b , a | d , c , b ) = (d , b , c ) ⇒ f (d , a , b |
d , b , a | d , c , b ) = (d , b , c )⇒ f (d , a , b | d , b | d , c , a ) = (d , b , c ), contradiction.

Step 3. f (d , a , b | d , a | d , a ) = (b , a , d ), f (d , b | d , b , c | d , b ) = (d , c , b ), f (d , c | d , c | d , c , a ) =

(c , d , a ).22

Recall from the beginning f (d , a , b | d , a | d , a ) ∈ {(b , d , a ), (b , a , d )} . Step 2 implies f (d , a , b |
d , a | d , a ) = (b , a , d ). By symmetry, we also have f (d , b | d , b , c | d , b ) = (d , c , b ), f (d , c | d , c |
d , c , a ) = (c , d , a ).

Step 4. Such stable, efficient and group strategy-proof rule f does not exist.

Consider the following preference profile R . R 1 : d , b , a ; R 2 : d , c , b ; R 3 : d , a , c . By step

3, f (d , c | d , c | d , c , a ) = (c , d , a ), thus by Claim 2 f (d , c | d , c , b | d , a , c ) = (c , d , a ), then

f1(R ′) 6= d otherwise agent 1 can manipulate and be strictly better-off. Similarly, f (d , a , b |
d , a | d , a ) = (b , a , d )⇒ f (d , b , a | d , a | d , a , c ) = (b , a , d )⇒ f2(R ) 6= d . And f (d , b | d , b , c |
d , b ) = (d , c , b )⇒ f (d , b , a | d , c , b | d , b ) = (d , c , b )⇒ f3(R ) 6= d . Nonwastefulness is violated

hence such rule f does not exist. �

Proof of Corollary 1. “only if” part follows directly from Theorem 4.

“if” part. We show that if any minimal subproblem with
�

�
eN
�

�=
�

�
eH
�

� is either a house allocation

problem or a housing market problem then strong non-reversal is satisfied. Assume to the

22The idea is similar to the preference-based tiebreaking rule in the proof of Theorem 3. When all the agents
have the same first choice d and same second choice h ∈ {a , b , c } , if h ∈ D (i ) then i will be assigned her third
choice, and who gets d depends on i ’s third choice: if i ’s third choice belongs to D ( j ) ( j 6= i ) then the third agents
k will be assigned d .
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contrary there exists a weak priority reversal
�

i , j
	

�a k , k �b i , k �c j . If b = c , pick any h ∈
H \{a , b }and

�

eN =
�

i , j , k
	

, eH = {a , b , h} ,�
eH

	

is minimal, but it is not a house allocation prob-

lem or a housing market problem, contradiction. If b 6= c ,
�

eN =
�

i , j , k
	

, eH = {a , b , c } ,�
eH

	

is

minimal and a similar contradiction will be reached. �

Proof of Proposition 2. “if” part. Suppose � does not satisfy weak non-reversal, then there

exists distinct i , j , k ∈ N and a , b ∈ H such that
�

i , j
	

�a k �b

�

i , j
	

. If i ∼b j then this is a

strongly cyclic tie, thus � is not EW-acyclic. If i �b j there is an Ergin-cycle k �b i �b j �a k , if

j �b i there is an Ergin-cycle k �b j �b i �a k , so � is not Ergin-acyclic when it is not i ∼b j .

“only if” part. We have shown weak non-reversal implies Ergin-acyclicity. Suppose � satisfies

weak non-reversal but assume to the contrary there exists a strongly cyclic tie i1 ∼o i2 between

two distinct agents i1, i2, then there exists j1, j2 ∈ N \ {i1, i2} and p1, p2 ∈ H such that we have

four possible cases:

Case 1. j1 6= j2, p1 6= p2 and
�

j1, j2

	

�o i1 ∼o i2, i1 �p1
j1, i2 �p2

j2. Then j2 �p1
i1 otherwise

�

j1, j2

	

�o i1 �p1

�

j1, j2

	

which is a strong priority reversal. Similarly j1 �p1
i2 otherwise j1 �o

{i1, i2} �p1
j1, and j2 �p2

i1 otherwise j2 �o {i1, i2} �p2
j2. But now we have

�

i1, j2

	

�p1
i2 �p2

�

i1, j2

	

, contradiction.

Case 2. j1 6= j2, p1 = p2 and
�

j1, j2

	

�o i1 ∼o i2, i1 �p1
j1, i2 �p1

j2. By the same argument in case 1

we have j2 �p1
i1. Then {i1, i2} �p1

j1 �o {i1, i2} , contradiction.

Case 3. j1 = j2, p1 = p2 and j1 �o {i1, i2} �p1
j1, contradiction.

Case 4. {i1, i2} �p1
j1, j1 �p2

j2, j2 �o i1 ∼o i2. First it can be easily verified that
�

�

�

o , p1, p2

	�

� = 3

otherwise there always exists an Ergin-cycle. Then j2 �p1
j1 otherwise {i1, i2} �p1

j2 �o {i1, i2} .

Similarly j2 �o j1 otherwise j1 �o {i1, i2} �p1
j1, and i1 �p2

j1 otherwise j1 �p2

�

i1, j2

	

�p1
j1. But

now we have
�

i1, j1

	

�p2
j2 �o

�

i1, j1

	

, contradiction. �

Proof of Proposition 3. When� satisfies strong non-reversal, givenσwe construct Γ such that

f Γ = f �(σ, ·). We first define some useful concepts. For a ∈H , Ta = (V ,Q ) is a rooted tree for a

where V is the set of vertices and Q ⊂ V ×V is the set of arcs. Each vertex v ∈ V is labeled by

an agent L (v ) ∈N and each arc (vi , v j ) is labeled by a house H (vi , v j ) ∈H \{a } . v0 is the root

of Ta if it is the unique vertex such that there is no v ∈V with (v, v0) ∈Q . A terminal vertex is a

vertex v such that there is no v ′ ∈V with (v, v ′) ∈Q . A Q -path from v1 to vr is a sequence {vs }r
s=1

where r ¾ 2, such that for all s = 1, ..., r − 1, (vs , vs+1) ∈Q . If there exists a Q-path {vs }r
s=0 from

v0 to vr , then denote O(v0, vr | Ta ) = ∪r−1
s=0 {H (vs , vs+1)} and A (v0, vr | Ta ) = ∪r−1

s=0 {L (vs )} . Also

let O(v0, v0 | Ta ) = A (v0, v0 | Ta ) = φ. For a subproblem
�

eN , eH ,�
eH

	

with the smallest priority
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set A, i ∈ A is the top priority agent for
�

eN , eH ,�
eH

	

if (i)
�

A, eH ,�
eH

	

has the house allocation

structure and σ−1(i ) < σ−1( j ) for all j ∈ A \ {i } , or (ii) it has the housing market structure,

a ∈ I
eH and σ−1(i ) < σ−1( j ) for all j ∈ A \ {i } , or (iii) it has the housing market structure and

a ∈ U (i ). v ∈ V is a top priority vertex if v = v0, or there is a Q-path from v0 to v and when

N \ {A (v0, v | Ta )∪{L (v )}} 6=φ, H \ {O(v0, v | Ta )∪{a }} 6=φ, L (v ) is the top priority agent for
�

N \A (v0, v | Ta ), H \O(v0, v | Ta ),�H \O(v0,v |Ta )

	

. Assume properties (A.1), (A.2), (B .1), (B .2), (B .3)

and (C .1) of a rooted tree in Pápai (2000) hold.

Let ξ be the set of rooted trees for a such that each terminal vertex is a top priority ver-

tex. Consider the rooted tree T 0
a = (V = {v0} ,Q = φ), where L (v0) is the top priority agent

for {N , H ,�H } , clearly T 0
a ∈ ξ. So a belongs to the initial endowment set of agent L (v0). We

now define a function ϕ : ξ→ ξ that expands a rooted tree for a such that repeated applica-

tion of ϕ on T 0
a will lead to a full inheritance tree Γa . Given Ta = (V ,Q ) ∈ ξ, denote the set of

terminal vertices as τ(Ta ). ∀t ∈ τ(Ta ), if N = A (v0, t | Ta )∪ {L (t )} or H = O(v0, t | Ta )∪ {a } ,

let V t = Q t = φ (no expansion is needed from t ). Otherwise let At be the smallest priority

set of
�

N \A (v0, t | Ta ), H \O(v0, t | Ta ),�H \O(v0,t |Ta )

	

. If At = {L (t )} , we go to the endogenous

endowment stage directly. Otherwise list agents in At \ {L (t )} according toσ as {xs }
|At |−1
s=1 .

Fixed endowment stage. We first expand a rooted tree by letting a be inherited to other agents

in At followingσ. Construct vertex vh (t ) for each h ∈H \ {O(v0, t | Ta )∪{a }} .

Let V t
1 = {vh (t )}h∈H \{O(v0,t |Ta )∪{a }} , and L (v ) = x1 for all v ∈ V t

1 . Q t
1 = {(t , vh (t ))}h∈H \{O(v0,t |Ta )∪{a }}

and H (t , vh (t )) = h . Then T t
1 = (V ∪V t

1 ,Q ∪Q t
1 ). In general, given V t

k ,Q t
k , T t

k , define V t
k+1 and

Q t
k+1 as follows: for ṽ ∈V t

k , construct vh (ṽ ) for each h ∈H \
�

O(v0, ṽ | T t
k )∪{a }

	

.

Then V t
k+1 =∪ṽ∈V t

k

¦

{vh (ṽ )}h∈H \{O(v0,ṽ |T t
k )∪{a }}

©

and L (v ) = xk+1 for all v ∈V t
k+1.

Q t
k+1 = ∪ṽ∈V t

k

¦

{(ṽ , vh (ṽ ))}h∈H \{O(v0,ṽ |T t
k )∪{a }}

©

and H ((ṽ , vh (ṽ )) = h . T t
k+1 = (V ∪

�

∪k+1
s=1 V t

s

	

,Q ∪
�

∪k+1
s=1Q t

s

	

). After V t
|At |−1, Q t

|At |−1 and T t
|At |−1 are constructed, we go to the next stage.

Endogenous endowment stage. If H =O(v0, v | T t
|At |−1)∪{a } for some v ∈V t

|At |−1 or N =A (v0, t |
Ta )∪At , let V t

|At | =V t
|At |−1,Q t

|At | =Q t
|At |−1. Otherwise we let a be inherited to some agent in the next

smallest priority set and clearly such inheritance depends on the previous assignments. Con-

struct Q t
|At | and V t

|At | as in the last stage except the labeling of vertices in V t
|At |. For any v ∈ V t

|At |,

let L (v ) be the top priority agent for
n

N \A (v0, v | T t
|At |−1), H \O(v0, v | T t

|At |−1),�H \O(v0,v |T t
|At |−1

)

o

.

Then V t =∪|A
t |

s=1 V t
s , Q t=∪|A

t |
s=1 Q t

s .

Let V ′ = V ∪
�

∪t ∈τ(Ta )V
t
	

, Q ′ = Q ∪
�

∪t ∈τ(Ta )Q
t
	

. Then ϕ(Ta = (V ,Q )) = T ′a = (V
′,Q ′) ∈ ξ.

Repeated applications ofϕ on T 0
a give us an inheritance tree for a : there exists some integer n
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such that ϕn (T 0
a ) =ϕ

n+1(T 0
a ) = Γa where Γa satisfies properties (C .2) and (C .3) in Pápai (2000).

After Γa is specified for all a ∈H , by the construction f Γ = f �(σ, ·). �
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