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Abstract

In a general one-sector optimal stochastic growth model where the production tech-

nology may be globally unproductive or may allow for unbounded growth, a policy

function satisfying the Ramsey-Euler condition may not be optimal even if consumption

and investment are continuous and increasing in output. We outline verifiable suffi cient

conditions for optimality that do not require checking the transversality condition. In

addition to continuity (or monotonicity), these conditions impose lower bounds on the

propensity to consume. In the case of production functions with multiplicative shocks,

the consumption propensity needs to be bounded away from zero; a similar condition

is suffi cient for more general production functions if the utility function belongs to a

restricted class.
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1 Introduction

The one sector model of optimal economic growth under uncertainty (Levhari and Srinivasan

1969, Brock and Mirman, 1972) has been widely used by economists to examine problems

of capital accumulation in stochastic environments including macroeconomic growth under

technology or productivity shocks and resource management under environmental uncer-

tainty. Variations of the model have also been used to study business cycles.

In this model, a representative agent allocates the currently available output (of a sin-

gle good) between investment and consumption where consumption generates immediate

utility while investment generates next period’s output according to a production function

that is subject to exogenous production shocks. In the standard version of the model, the

exogenous shocks are independent and identically distributed over time. The agent maxi-

mizes expected discounted sum of utility from consumption where the discount factor, the

utility function and the production function are invariant over time. In such a stationary

framework, the intertemporal economic trade-offs faced by the agent are reflected in the

optimal consumption policy function. Conditions for optimality play a very important role

in understanding the nature of this optimal policy function. In a large class of applications

where economists work with specific functional forms for utility and production functions,

suffi cient conditions for optimality help determine whether an explicitly specified policy

function is actually optimal. Even when one cannot derive explicit solutions to the dy-

namic optimization problem, suffi cient conditions for optimality are useful in showing that

a certain implicitly defined (“candidate”) function is optimal. Optimality conditions for

the dynamic optimization problem underlying the one sector stochastic growth model can

also be useful in dynamic games of capital accumulation such as dynamic games of common

property renewable resource extraction1.

In a convex framework (strictly concave utility, concave production function), the exist-

ing literature has used duality theory to derive a set of conditions that are both necessary

and suffi cient for a policy function to be optimal and, in fact, to be the unique optimal

policy function. In particular, an interior policy function (i.e., one where both consump-

tion and investment are always strictly positive when the current stock of output is strictly

positive) is optimal if, and only if, it satisfies the Euler condition (called the Ramsey-Euler

equation in this literature) and a transversality condition (Mirman and Zilcha 1975, Zilcha

1976, 1978).2 ,3

1See, for instance, Mitra and Sorger (2014).
2Key contributions emphasizing the importance of the transversality condition in models of intertempo-

ral resource allocation include Malinvaud (1953), Cass (1965), Shell (1969), Peleg and Ryder (1972) and
Weitzman (1973).

3That the Euler and transversality conditions are necessary and suffi cient for optimality has been es-
tablished for more general, convex dynamic optimization problems. See, among others, Stokey and Lucas
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The Ramsey-Euler equation is a simple first order condition that captures the trade-off

between consumption in any two consecutive time periods, and takes the form of a functional

equation. We refer to an interior consumption policy function satisfying this Ramsey-Euler

equation as a Ramsey-Euler policy and this paper contributes to a literature on systematic

study of the optimality of such a policy.

Using the characterization results mentioned above, a Ramsey-Euler policy can be shown

to be an optimal policy, if it satisfies a transversality condition. The transversality condition

essentially requires that the expected present value of capital stocks (valued by a shadow

price equal to the discounted marginal utility of current consumption) converge to zero

in the long run. It is an asymptotic condition on the entire stochastic process generated

by the policy function.4 Verifying the transversality condition can be a non-trivial task

when the stochastic process of output and consumption can reach levels arbitrarily close

to zero infinitely often (for instance, on sample paths involving runs of bad realizations of

the production shock) and the marginal utility of consumption is infinitely large at zero5;

it can also be somewhat challenging if output and investment can be arbitrarily large with

positive probability.

Mitra and Roy (2017b) develop an alternative suffi cient condition for optimality of a

Ramsey-Euler policy; they show that a Ramsey-Euler policy function is optimal if it is

continuous or co-monotone (i.e., consumption and investment are both non-decreasing in

current output). Their result implies that for policy functions that satisfy easily verifiable

properties such as continuity or monotonicity, one does not need to verify the transversality

condition to assert that a candidate policy function is optimal. They derive their results

under two restrictions on the production technology. First, the technology is assumed to

be productive for investment levels close to zero even under the worst realization of the

random shock i.e., marginal productivity at zero is always greater than one. Second, the

technology is assumed to exhibit bounded growth i.e., there is a maximum sustainable

capital stock beyond which the technology is unproductive even for the best realization of

the random shock. This paper investigates the optimality of Ramsey-Euler policy functions

for production technologies that may not necessarily satisfy these restrictions.

In particular, we consider a general framework that allows for production technologies

(1989), Acemoglu (2009). Establishing the necessity of transversality condition for optimality in general has
been more challenging; see, Kamihigashi (2001, 2003).

4For certain versions of our model, in checking for optimality of a Ramsey-Euler path (from an arbitrary
initial stock) the transversality condition may be replaced by an infinite number of "period by period"
conditions; see, Brock and Majumdar (1988), Dasgupta and Mitra (1988) and Nyarko (1988). Though such
conditions have not been established for the discounted stochastic model considered in this paper, it is worth
pointing out that like the transversality condition, these period-by-period conditions taken together involve
the entire stochastic process of consumption and capital and establishing optimality by showing that all of
them hold can be diffi cult to implement.

5Mitra and Roy (2017b) illustrate this diffi culty through examples.
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that may be unproductive at all levels of investment. In many macroeconomic applications6,

the structure of technology shocks is such that the net return on investment is always

negative under adverse realizations of the shock.7 At the same time, our framework also

allows for production technologies that are productive at all levels of investment so as to

be able to potentially sustain unbounded expansion of consumption and output or long run

economic growth.8

In their paper, Mitra and Roy (2017b) provide an example to show why their result may

not hold in a more general model; in an economy with a deterministic linear production

function where the average productivity is always greater than one i.e., allows for unbounded

expansion of output and consumption, they show that there is a continuous and co-monotone

Ramsey-Euler policy function that is not optimal. In this paper, we provide a different

example of an economy with a deterministic linear production function that is globally

unproductive i.e., the average productivity is always less than one; we explicitly derive a

non-linear solution to the Ramsey-Euler functional equation that is not optimal; this non-

optimal consumption function is smooth, strictly convex and strictly increasing in output;

also, investment is strictly increasing in output. Together, these examples show that a

continuous and co-monotone Ramsey-Euler policy function need not be optimal in our

more general framework.

In each of the two examples mentioned above, the non-optimal Ramsey-Euler policy

function is such that the propensity to consume may be arbitrarily close to zero (even

though consumption is always strictly positive). In the first example, the propensity to

consume tends to zero as output becomes indefinitely large while in the second example,

the same occurs as output tends to zero. We show that some restriction on the behavior of

the propensity to consume can play an important role in ensuring optimality of a Ramsey-

Euler policy function.

For production functions where the random shock enters multiplicatively, we show that

a Ramsey-Euler policy function is optimal if (i) it is either continuous or co-monotone,

and (ii) the propensity to consume is bounded away from zero; condition (ii) is required to

hold only if the worst case production function is unproductive near zero or if the best case

production allows for unbounded expansion. This result is a generalization of the optimality

conditions in Mitra and Roy (2017b). Note that production functions with multiplicative

6Similarly, renewable resources stocks may not be able to regenerate and grow (regardless of the stock
size and the amount of harvesting) if environmental conditions are highly adverse.

7See, for instance, Jones et al (2005). In many applcations, the shocks enter the production function
multiplicatively and are assumed to have a lognormal distribution. Our framework however assumes that
the shocks are bounded.

8For analysis of (exogenous) growth models where the technology may be "productive at infinity" and
allows for sustained long run growth, see among many others, Gale and Sutherland (1968), Levhari and
Srinivasan (1969), Majumdar and Zilcha (1987), Jones and Manuelli (1990), de Hek (1999) and de Hek and
Roy (2001).
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shock structure are widely used in macroeconomics and resource economics; further, the

deterministic production function is a special case of multiplicative shocks.

For more general production functions where the random shock is not necessarily mul-

tiplicative, we show that a Ramsey-Euler policy is optimal if (i) holds and the propensity

to consume is bounded below by a generalized lower bound that depends on the extent of

variation (due to random shock) in the elasticity of the production function.

We also show that if the utility function belongs to a special family (that includes,

for instance, all bounded utility functions), then conditions (i) and (ii) mentioned above

continue to be suffi cient for optimality of a Ramsey-Euler policy even if the random shock

is not multiplicative.

It is well known in our model, the optimal consumption policy function is unique, con-

tinuous, and both the optimal consumption and investment are non-decreasing (in fact,

strictly increasing) in current output; further, if the optimal policy is interior it must sat-

isfy the Ramsey-Euler condition.9 This paper shows that these global properties of the

policy functions that have been known to be necessary for optimality may not be suffi cient

for optimality once we allow for production technologies that are potentially unproductive

at zero or productive at infinity. Optimality is however ensured if one can, in addition,

verify a condition on the limiting behavior of the propensity to consume (though this may

not be necessary for optimality); taken together, they replace the transversality condition

in the set of suffi cient conditions for the optimality of a Ramsey-Euler policy.

Continuity or monotonicity of the Ramsey-Euler policy can be easily verified; it is also

easy to verify whether our condition on the propensity to consume is satisfied (for instance,

whether it is bounded away from zero) for a candidate consumption function. Our result

allows us to immediately verify optimality of explicit solutions to the Euler equation in

certain applications with specific functional forms for the utility and production functions

where the policy function is linear so that propensity to consume is constant. Linearity is

however an exception, rather than the rule. As new examples are developed in the future

with non-linear Ramsey-Euler consumption functions (as in the examples outlined in this

paper), our result will continue to be useful as a way to verify optimality. Our main result

can also be a useful theoretical tool in proving optimality of a policy function with no

explicit form.10

9See, for instance, Kamihigashi (2007).
10Our alternative suffi cient condition for optimality of a Ramsey-Euler policy is firmly rooted in the

duality approach to the characterization of optimality. A different approach, based on dynamic programming
concepts and methods, has also been explored in the literature. Roughly speaking, this method involves
guessing the value function from the Ramsey-Euler condition and verifying that this “candidate” value
function satisfies the functional equation of dynamic programming, also known as the Bellman equation
(see, for instance, Lucas and Stokey, 1989). This approach is useful if the solution to the Bellman equation
is unique (for instance, if the utility function is bounded below in the stochastic growth model). Recent
advances have extended the applicability of this approach to unbounded utility functions; see, among others,
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The paper is organized as follows. Section 2 outlines the model, the assumptions and

some definitions. Section 3 outlines some benchmark results for the classical version of the

model with bounded growth technology that is productive near zero. Section 4 outlines

two important examples to illustrate the fact that a continuous and co-monotone Ramsey-

Euler consumption function may not be optimal and that the main result in Mitra and

Roy (2017b) may not hold for a more general class of production technologies. Section 5

contains the main results of the paper on suffi cient conditions for optimality of a Ramsey-

Euler policy. Section 6 concludes. Section 7 is the appendix and contains proofs of all

results as well as some details of the example in Section 4.1.

2 The Model

We consider an infinite horizon one-good representative agent economy. Time is discrete

and is indexed by t = 0, 1, 2, .... At each date t ≥ 0, the representative agent observes the

current stock of output yt ∈ R+ and chooses the level of current investment xt, and the
current consumption level ct, such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt.

This generates yt+1, the output stock next period through the relation

yt+1 = f(xt, rt+1)

where f(x, r) is the production function and rt+1 is a random production shock realized at

the beginning of period (t+ 1).

2.1 Production

We now describe aspects of the above mentioned production process formally. We begin by

specifying the nature of the exogenous shocks to production as follows

(R.1) The sequence of random shocks {rt}∞t=1 is assumed to be an independent and
identically distributed random process defined on a probability space (Ω,F , P ), where the

marginal distribution is denoted by µ. The support of this distribution function is a non-

empty compact set A ⊂ R. The distribution function corresponding to µ is denoted by
F.

The production function is a map f from R+ × A to R+. We impose the following

Rincón-Zapatero and Rodriguez-Palmero (2003), Matkowski and Nowak (2011) and Kamihigashi (2014). In
the context of the canonical stochastic optimal growth model, we feel that our result is easier to implement.
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assumptions11 on the production function f :

(T.1) Given any r ∈ A, f(., r) is assumed to be continuous, strictly increasing and

concave on R+, with f(0, r) = 0, and differentiable on R++, with f ′(·, r) > 0 on R++.
Further, for any x ≥ 0, f(x, .) : A→ R+, is a (Borel) measurable function.

Define the lower envelope production function f(x) : R+ → R+ by

f(x) = inf
r∈A

f(x, r).

It is easy to check that f(x) is non-decreasing on R+ and f(0) = 0. Further, f(x) is concave

on R+. It follows that the “worst case”average productivity of investment [f(x)/x] is non-

increasing in x on R++. The upper envelope production function f(x) is defined on R+
by:

f(x) = sup
r∈A

f(x, r)

We assume that:

(T.2)
f(x) > 0, f(x) <∞ for all x > 0.

Given an initial stock y ≥ 0, a stochastic process {yt(y, ω), ct(y, ω), xt(y, ω)} is feasible
from y if it satisfies y0 = y, and:

(i) ct(y, ω) ≥ 0, xt(y, ω) ≥ 0 for t ≥ 0

(ii) ct(y, ω) + xt(y, ω) ≤ yt(y, ω), yt+1(y, ω) = f(xt(y, ω), rt+1(ω)) for t ≥ 0

and if for each t ≥ 0 {ct(y, ω), xt(y, ω)} are Ft adapted where Ft is the (sub) σ-field generated
by partial history from periods 0 through t.12

2.2 Preferences

Consumption in each period generates an immediate return according to a utility function,

u : R++ → R. The following assumption is imposed on the utility function:

(U.1) u is continuously differentiable, strictly increasing and strictly concave on R++
with u′ > 0 on R++.
11Note that we do not require the production function to be monotonic or continuous in the realization

of the production shocks.
12We skip formal definitions of sigma fields and sub sigma fields as these constructs are standard in the

theory of stochastic processes.
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We define

u(0) ≡ lim
c↓0

u(c),

where the limit is allowed to be finite or −∞.
The agent discounts future utility using a time invariant discount factor denoted by

ρ ∈ (0, 1).

2.3 The Optimization Problem

Given initial stock y ≥ 0, the representative agent’s objective is to maximize the expected

value of the discounted sum of utilities from consumption:

E

[ ∞∑
t=0

ρtu(ct)

]

subject to feasibility constraints.

Given y ≥ 0, define the stochastic process of consumption {cMt (y, ω)} by: cM0 (y, ω) =

y, cMt+1(y, ω) = f(cMt (y, ω), rt+1(ω)) for all t ≥ 0. Then, for every ω and t, cMt (y, ω) is an

upper bound on feasible consumption in period t. We assume that:

(D.1) For all y ≥ 0,

E

[ ∞∑
t=0

ρtu(cMt (y, ω))+

]
<∞

where u(c)+ = max{u(c), 0}.
Assumption (D.1) ensures that for any feasible stochastic process {yt(y, ω), ct(y, ω), xt(y, ω)}

from y ≥ 0, the objective of the representative agent

E

[ ∞∑
t=0

ρtu(ct(y, ω))

]

is well defined though it may equal −∞, and that (see, Kamihigashi 2007)

E

[ ∞∑
t=0

ρtu(ct(y, ω))

]
=
∞∑
t=0

ρtE[u(ct(y, ω))] (1)

Note that (D.1) is always satisfied if either u is bounded above or alternatively, if limsupx→∞[f(x)/x] <

1 i.e., the technology exhibits bounded growth.

Given initial stock y ≥ 0, a feasible stochastic process {yt(y, ω), ct(y, ω), xt(y, ω)} is
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optimal from y if for every feasible stochastic process {y′t(y, ω), c′t(y, ω), x′t(y, ω)} from y,

E

[ ∞∑
t=0

ρtu(ct(y, ω))

]
≥ E

[ ∞∑
t=0

ρtu(c′t(y, ω))

]

2.4 The Optimal Consumption function

A consumption (policy) function, is a function c : R+ → R+, satisfying:

0 ≤ c(y) ≤ y for all y ∈ R+

Note that this implies c(0) = 0. Associated with a consumption function c(·), is an invest-
ment (policy) function x : R+ → R, defined by

x(y) = y − c(y) for all y ∈ R+

Thus, the investment function x(·) satisfies:

0 ≤ x(y) ≤ y for all y ∈ R+

A feasible stochastic process {yt(y, ω), ct(y, ω), xt(y, ω)} is said to be generated by a
consumption function c(y) from initial stock y ∈ R+ if for all ω ∈ Ω

y0(y, ω) = y; yt+1(y, ω) = f(yt(y, ω)− c(yt(y, ω)), rt+1(ω)) for t ≥ 0;

ct(y, ω) = c(yt(y, ω)), xt(y, ω) = x(yt(y, ω)) = yt(y, ω)− c(yt(y, ω)) for t ≥ 0.

A consumption function c(y) is called an optimal consumption function if for every

y ∈ R+, the feasible stochastic process {yt(y, ω), ct(y, ω), xt(y, ω)} generated by c(y) is

optimal from initial stock y.

A consumption function c(y) is said to be interior (or, to satisfy interiority) if

0 < c(y) < y for all y > 0.

A consumption function c(y) is said to be co-monotone if c(y) and x(y) = y − c(y) are

non-decreasing in y on R+.
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2.5 Ramsey-Euler and Transversality Conditions

An interior consumption function c(y) is said to satisfy the Ramsey-Euler condition if13

u′(c(y)) = ρ

∫
A
u′(c(f(y − c(y), r)))f ′(y − c(y), r)dF (r) for all y > 0 (RE)

In this case we refer to the consumption function c(y) as a Ramsey-Euler (consumption)

policy.

For any interior consumption function c(y), the feasible stochastic process {yt(y, ω),

ct(y, ω), xt(y, ω)} generated by the consumption function c(y) from any initial stock y > 0

satisfies:

yt(y, ω) > 0, ct(y, ω) > 0, xt(y, ω) > 0 for all t ≥ 0 and for all ω ∈ Ω.

An interior consumption function c(y) is said to satisfy the transversality condition if

for all y > 0 :

lim
t→∞

E{ρtu′(ct(y, ω))xt(y, ω)} = 0 (TC)

where {yt(y, ω), ct(y, ω), xt(y, ω)} is the feasible stochastic process generated by the con-
sumption function c(y) from initial stock y.

3 Optimality of Ramsey-Euler Policy: Benchmark

It is known that if a consumption function is interior, satisfies the Ramsey-Euler condition

(RE) and the transversality condition (TC), then it is an optimal consumption function;

in other words, a Ramsey-Euler policy is optimal if it satisfies the transversality condition

(TC). This was established by Mirman and Zilcha (1975) in the "bounded growth" case;

it has since been established in more general settings. A specific version of this suffi ciency

result (for the model outlined in Section 2) is reported in this paper as Lemma 1 (in the

Appendix) and is used in the proof of our main results. It should be mentioned that

the transversality condition (TC) has also been shown to be necessary for optimality of a

Ramsey-Euler policy.

As mentioned earlier, the transversality condition essentially involves the entire stochas-

tic process of consumption and capital generated by a policy function; it cannot be verified

immediately by inspecting the policy function. Depending on the specific utility and pro-

duction functions, verification of the transversality condition can require some work (see,

13For each y > 0, the right-hand side of (RE) is ρ times the integral of a non-negative measurable function
of r with respect to the distribution function F . It is therefore well defined. (RE) requires that the expression
be finite and equal to u′(c(y)).
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Mitra and Roy 2017b for some more discussion of this issue). It is therefore interesting

to explore whether there are alternative conditions for optimality of a policy function that

are easier to verify than the transversality condition; in other words, can the transversality

condition be replaced by some fairly apparent properties of the policy function.

Mitra and Roy (2017b) establish alternative conditions for optimality of a policy function

for the "canonical" version of the one sector optimal stochastic growth model where the

technology exhibits bounded growth (i.e., there is a maximum sustainable capital stock)

and is productive (for sure) near zero. The main result in that paper is stated below for

ease of comparison:

Proposition 1 (Theorem 1, Mitra and Roy 2017b) Assume the following:

(E.1) There is K > 0 such that
[
f(x)/x

]
< 1 for all x > K

(E.2) limx↓0[f(x)/x] > 1

Suppose that c(·) is an interior consumption function. Then the following statements are
equivalent:

(a) c(y) is continuous and satisfies the Ramsey-Euler condition (RE)

(b) c(y) and y − c(y) are nondecreasing on R+ (i.e., c(y) is co-monotone) and c(y)

satisfies the Ramsey-Euler condition (RE)

(c) c(y) and y − c(y) are strictly increasing on R+ and c(y) satisfies the Ramsey-Euler

condition (RE)

(d) c(y) is optimal.

The key implication of this result is that for the canonical version of the model, a

Ramsey-Euler policy function is optimal as long as it is continuous (or alternatively, co-

monotone).

The proof of this result in Mitra and Roy (2017b) uses the end-point conditions (E.1)

and (E.2) on the production technology. This naturally leads to the question whether their

result extends to economic environments where either (E.1) or (E.2) does not hold i.e., the

production technology is not necessarily productive near zero for all realizations of the shock

or alternatively, allows for unbounded expansion of capital and consumption (or both). In

the next section, we outline two examples to show that their result may not hold if the

production technology does not satisfy either condition (E.1) or condition (E.2).
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4 Non-optimal Continuous and Co-monotone Ramsey-Euler

Policy: Two Examples

In this section, we outline two examples of economies with deterministic production tech-

nologies that do not satisfy the endpoint conditions assumed in Proposition 1. In first

example, the production function is unproductive at all levels of investment and therefore

violates Condition (E.1). In the second example, the production function is productive at

all levels of investment i.e., allows for unbounded expansion of capital and consumption,

and therefore violates Condition (E.2). For each example, we explicitly specify an inte-

rior consumption function that solves the Ramsey-Euler equation (RE), is continuous and

co-monotone, but is not optimal.

4.1 Example 1: Unproductive technology

In this example, the production function deterministic, linear and unproductive at all pos-

itive input levels. It is given by

f(x) =
x

2
for all x ≥ 0 (2)

We specify the utility function u to be:

u(c) =

{
ln c for all c > 0

−∞ for c = 0
(3)

Finally, let the discount factor ρ = 1
2 . Then, all of our assumptions in Section 2 are satisfied.

The Ramsey-Euler functional equation (RE) for this example reduces to:

c

(
y − c(y)

2

)
=
c(y)

4
for all y > 0 (4)

It is easy to see that the consumption function:

c∗(y) =
y

2
for all y ≥ 0

solves the Ramsey-Euler function equation (4) and the path {c∗t , x∗t , y∗t } generated by this
policy function satisfies the transversality condition (TC).14Therefore, (using for instance,

Lemma 1 in the appendix), c∗(y) is in fact the optimal consumption policy function. Note

that strict concavity of the utility and production functions implies that the optimal con-

sumption function is unique.

14ρtu′(c∗t ))x
∗
t = (1/2)

t → 0 as t→∞.
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We now show that there is a continuous and co-monotone solution to the Ramsey-Euler

functional equation (4) that is different from c∗(y) and is therefore, not optimal. Consider

the function φ(y) defined by:

φ(y) =
(1 + 4y)− (1 + 8y)

1
2

8
for all y ≥ 0 (5)

Note that φ(0) = 0, and since (1 + 8y)
1
2 < (1 + 8y + 16y2)

1
2 = (1 + 4y) for all y > 0, we

have φ(y) > 0 for all y > 0. Further, since (1 + 8y)
1
2 > 1 for all y > 0, we have:

φ(y) < (4y/8) = (y/2) = c∗(y) for all y > 0 (6)

Thus, φ is an interior consumption function. Clearly, φ is continuous and differentiable on

R+. By differentiating (5), we see that:

8φ′(y) = 4− 4

(1 + 8y)
1
2

> 0 for all y > 0

so that φ′(y) > 0 for y > 0, and φ is strictly increasing on R+. Further, φ′(y) < 1
2 for all

y > 0. Thus, the interior consumption function φ(y) is continuous and co-monotone on R+.
We now claim that c(y) = φ(y) is a solution to the Ramsey-Euler functional equation (4).

To see this, define ψ : R+ → R+ by:

ψ(c) = 2c+ c
1
2 for all c ≥ 0 (7)

Note that ψ(0) = 0, and ψ(c) > 0 for all c > 0. In fact, ψ(c) > 2c for all c > 0. Further,

ψ(c) is strictly increasing and strictly concave in c on R+.
One can directly verify that the functions ψ and φ are inverses of each other i.e.,

ψ(φ(y)) = y for all y ≥ 0 and φ(ψ(c)) = c for all c ≥ 0; details are contained in the

Appendix.

The diffi culty in solving the functional equation (4) arises from the composition of the

unknown function with itself on the left-hand side. To get around this diffi culty, one writes

down its conjugate functional equation:

g(c/4)) = (1/2)(g(c)− c) for c ≥ 0 (8)

If g : R+ → R+ is a function satisfying g(c) ≥ c for all c ≥ 0, which solves the conjugate

functional equation (8), and g has an inverse, then the inverse of g solves the functional
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equation (4). We will demonstrate this explicitly. (8) can be rewritten as:

g(c) = c+ 2g(c/4) for c ≥ 0 (9)

We now show that g(c) = ψ(c), where ψ is defined by (7), solves (9). To this end, let us

write:

c+ 2g(c/4) = c+ 2ψ(c/4)

= c+ 4(c/4) + 2(c/4)
1
2

= 2c+ c
1
2 = ψ(c) = g(c) (10)

where we have used the definition of ψ in the second line and again in the last line of (10).

Since we have just demonstrated that ψ is a solution to (9), we can write:

ψ(c/4) =
ψ(c)− c

2
for c ≥ 0 (11)

Since φ(y) ≥ 0 for all y ≥ 0, we can use (11) to write:

ψ(φ(y)/4) =
ψ(φ(y))− φ(y)

2
for all y ≥ 0

i.e.,

ψ(φ(y)/4) =
y − φ(y)

2
for all y ≥ 0 (12)

Since φ(y) ≤ y for all y ≥ 0, we can apply the function φ to both sides of (12) to get:

φ[ψ(φ(y)/4)] = φ

(
y − φ(y)

2

)
for all y ≥ 0

i.e.,
φ(y)

4
= φ

(
y − φ(y)

2

)
for all y ≥ 0

so that φ solves the Ramsey-Euler functional equation (4). This concludes the example.

One interesting feature of the Ramsey-Euler consumption function φ(y) in the above

example is that the propensity to consume [φ(y)/y]→ 0 as y → 0.We will see that this is a

possible source of non-optimality of φ(y).

4.2 Example 2: Unbounded growth technology

We now outline an example of an economy where the production technology allows for

unbounded expansion of consumption and output i.e., the end point condition (E.2) in

13



Proposition 1 does not hold. In this economy, there is a non-optimal Ramsey-Euler con-

sumption function that is continuous and co-monotone. The example is contained in Mitra

and Roy (2017b: Example 3, Section 5); key aspects are reproduced below for ease of

reference. Define the utility function u to be:

u(c) =

√
c

1 +
√
c
for all c ≥ 0

Then, u satisfies (U.1). The production technology is deterministic and is given by

f(x) = 2x

which satisfies (T.1); it also satisfies endpoint condition (E.1) in Proposition 1. Set ρ =

(1/2). Consider the consumption function defined by:

c(y) =

{
(1/2)y for 0 ≤ y ≤ 2

1 for y > 2

Observe that c(y) is interior and continuous; further, c(y) and y − c(y) are non-decreasing

in y. For 0 < y ≤ 2, we have c(y) = (1/2)y, and f(y − c(y)) = 2(y − (1/2)y) = y, so that

c(f(y − c(y))) = (1/2)y = c(y). Thus

ρu′(c{f(y − c(y))})f ′(y − c(y)) =
1

2
u′((1/2)y)2 = u′(c(y))

verifying (RE) for y ∈ (0, 2]. For y > 2, we have 2(y−1) = 2y−2 > 2, and so c{f(y−c(y))} =

c{2(y − 1)} = 1. Thus,

ρu′(c{f(y − c(y))})f ′(y − c(y)) = (1/2)u′(c{f(y − c(y))})2

= u′(1) = u′(c(y))

verifying (RE) for y > 2. Finally, consider a different consumption function γ(·) defined by:

γ(y) = (1/2)y for all y ≥ 0

Starting from y = 4, the consumption function γ(·) generates a path (ỹt, c̃t, x̃t) where

consumption c̃t = 2 for all t ≥ 0. On the other hand, the path (yt, ct, xt) starting from

y = 4, generated by the consumption function c(·), has yt ≥ 4 for all t ≥ 0 and so ct = 1 for

all t ≥ 0, so that the discounted sum of utilities along the path (yt, ct, xt) is strictly smaller

than along the path (ỹt, c̃t, x̃t). Thus, c(·) is not an optimal consumption function. This

14



concludes the example.

Observe that somewhat similarly to Example 1, an interesting feature of the non-optimal

Ramsey-Euler consumption function c(y) in Example 2 is that the propensity to consume

[c(y)/y]→ 0 as y →∞.

5 Optimality of Ramsey-Euler Policy: Suffi cient Conditions

In this section, we outline properties of a Ramsey-Euler consumption function that are

suffi cient to ensure that it is optimal even if the production technology is unproductive or

allows for unbounded expansion of capital and consumption.

Recall that f, f are the upper and lower envelopes of the production function defined in

Section 2; they correspond to "best" and "worst" possible realizations of the random shock.

Define K ≥ 0 by:

K = sup{x ≥ 0 : f(x) ≥ x}

K = ∞ if the production technology allows for unbounded growth i.e., f(x) > x for all

x > 0; further, K = 0 if the technology is unproductive for sure and f(x) < x for all x > 0.

Define K ≥ 0 by:

K = inf{x > 0 : f(x) ≤ x}

= ∞, if f(x) > x for all x > 0

K > 0 if the "worst case" technology is productive near zero i.e., limx↓0[f(x)/x] > 1; K = 0

if limx↓0[f(x)/x] ≤ 1 so that15 f(x) ≤ x for all x ≥ 0 i.e., the "worst case" technology is

globally unproductive. Finally, note that K ≤ K.

5.1 Main Result

In this subsection, we consider the general model outlined in Section 2. For each x > 0,

r ∈ A, let the inverse elasticity of the production function η(x, r) > 1 be defined by

η(x, r) =
f(x, r)

f ′(x, r)x

and let

η(x) = sup
r∈A

η(x, r), η(x) = inf
r∈A

η(x, r).

15Note that f is concave on R+.
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We now specify a technical assumption on the production function that is used in the

next proposition and simplifies our analysis considerably:

(T.3) (i) There exist a, b ∈ A, z0, z1 ∈ R++ such that

f(x) = f(x, a) for all x ∈ [0, z1]

f(x) = f(x, b) for all x ≥ z2

(ii)

τ0 = lim
x→0

sup
η(x)

η(x, a)
<∞

τ∞ = lim
x→∞

sup
η(x)

η(x, b)
<∞

Under (T.3)(i), there is a specific "worst" case production shock a associated with

the lower envelope of the production function for investment levels close to zero, and a

specific "best" case production shock b associated with the upper envelope of the production

function when investment is large enough. (T.3)(ii) essentially requires that the variation
due to random shock in the elasticity of the production function at zero and infinity are

bounded. If the random shock enters the production function multiplicatively, then η(x, r)

is independent of r so that τ0 = τ∞ = 1 and assumption (T.3)(ii) is satisfied. Note that
(T.3) is also satisfied by some well known production functions that are not ordered by the
shock such as f(x, r) = xr, r ∈ A ⊂ (0, 1).

Recall that f ′(0, r) = limx→0+ f
′(x, r) is the marginal productivity at zero for realization

r of the random shock (f ′(0, r) may equal +∞).

We are now ready to state our main proposition:

Proposition 2 Assume (T.3).Consider a Ramsey-Euler consumption function c(y) that is

either continuous or co-monotone on R+.Further, suppose that

lim
y→0

inf
c(y)

y
> 1− 1

τ0
, if f ′(0, a) ≤ τ0 (GP1)

lim
y→∞

inf
c(y)

y
> 1− 1

τ∞
, if K =∞ (GP2)

Then, c(y) is optimal (and is, in fact, the unique optimal consumption function)

Proposition 2 provides a set of verifiable properties of a Ramsey-Euler policy function

that ensures it is optimal in environments that allow for unproductive technology as well

as unbounded growth.
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The proof of Proposition 2 is based on showing that the transversality condition (TC)

holds i.e., ρtE{u′(ct)xt} → 0 as t→∞ where {ct} and {xt} are the consumption and invest-
ment processes generated by the continuous (and co-monotone) Ramsey-Euler consumption

function c(y).This is trivial if the corresponding output process {yt} lies almost surely in a
closed interval that is bounded away from zero. The diffi culty arises when output and con-

sumption are not bounded away from zero or infinity with positive probability. Our proof

is based on using the fact that xt ≤ yt with probability one and showing that each term

of the sequence {ρtE(u′(ct)yt)}∞t=0 is a contraction of its previous term. This is different
from the proof of optimality of Ramsey-Euler policy in Mitra and Roy (2017b) where the

transversality condition is shown to hold without demonstrating such a contraction prop-

erty; the arguments in that proof cannot be easily extended to production functions that

are unproductive near zero or productive at infinity.

The suffi cient conditions for optimality in Mitra and Roy (2017b) impose no restriction

on the propensity to consume. The two examples in the previous section indicate that some

restrictions on the propensity to consume are needed for a Ramsey-Euler policy function to

be optimal when the technology is unproductive or allows for unbounded growth. Conditions

(GP1) and (GP2) impose lower bounds on the propensity to consume; the bounds depend

on the extent of variation in the elasticity of the production function due to random shocks.

These are suffi cient conditions; we are unable to determine whether they are necessary for

optimality in such technological environments.

It is worth noting that if the production function satisfies bounded growth i.e., K <∞,
then condition (GP2) no longer applies. However, condition (GP1) may continue to apply

even if the production technology is productive near zero i.e., K > 0. Thus, the suffi cient

conditions in Proposition 2 are potentially stronger than and do not reduce to the optimality

conditions in Mitra and Roy (2017b) for production functions that satisfy the assumptions

in that paper (or alternatively, Proposition 1 under assumptions E.1 and E.2).

Proposition 2 also yields the following simpler result:

Corollary 1 Consider a Ramsey-Euler consumption function c(y) that is continuous or

co-monotone on R+.Further, suppose that

τ = sup
x>0

η(x)

η(x)
<∞ and inf

y>0

c(y)

y
> 1− 1

τ
.

Then, c(y) is optimal and in fact, is the unique optimal consumption function.
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5.2 Multiplicative Shock

In this subsection, we consider production functions where the random shock is multiplica-

tive. Such production functions are widely used in the literature; further, both examples

in the previous section deal with deterministic production functions that can be viewed as

special cases of multiplicative shock. In particular, for this subsection we assume:

f(x, r) = q(r)h(x), r ∈ A, x ≥ 0 (13)

Assumptions (T.1), (T.2) and (T.3) on f(x, r) hold under the following restrictions on

the function h and q:

(M.1) h : R+ → R+ is continuous, concave and strictly increasing, h(0) = 0 and h is

differentiable on R++, h′(x) > 0 for all x > 0 and h′(0) = limx→0 h′(x) ∈ R+ ∪ {+∞}
satisfies

h′(0) > 0

(M.2) q : A→ R++ is Borel-measurable and there exists a, b ∈ A such that

q(a) ≤ q(r) ≤ q(b) for all r ∈ A.

Once again, a and b are respectively the worst and best shocks. Note that if q(r) = 1

for all r, we have a deterministic production function where f(x, r) = h(x).

It is easy to check that

η(x, r) =
f(x, r)

f ′(x, r)x
=

h(x)

h′(x)x

is independent of r so that

τ0 = τ∞ = 1.

Also, observe that K = 0 if, and only if,

q(a)h′(0) ≤ 1 = τ0.

Proposition 2 therefore immediately yields:
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Corollary 2 Consider the class of production functions where the random shock is mul-

tiplicative and in particular, (13) holds under restrictions (M.1) and (M.2). Let c(y) be

a Ramsey-Euler consumption function that is either continuous or co-monotone on R+.
Further, suppose that the propensity to consume (c(y)/y) satisfies:

lim
y→0

inf
c(y)

y
> 0, if K = 0 (C.1)

lim
y→∞

inf
c(y)

y
> 0, if K =∞ (C.2)

Then, c(y) is optimal.

Note that under the assumptions of Mitra and Roy (2017b), K > 0 and K < ∞ so

that condition C.1 and C.2 in Proposition 2 do not apply and continuity or co-monotonicity

of Ramsey-Euler policy is suffi cient for optimality. In other words, for the multiplicative

shock case, the suffi cient conditions for optimality in Proposition 2 reduce to the optimality

conditions in Mitra and Roy (2017b) under their assumptions (or alternatively, to those

in Proposition 1 under restrictions E.1 and E.2). Within the class of production functions

with multiplicative shocks, Proposition 2 generalizes the suffi cient conditions in Mitra and

Roy (2017b) to a larger set of production functions.

5.3 A Special Class of Utility Functions

In this subsection, we restrict attention to a class of utility functions while allowing the

production function to have a fairly general structure. We show that for this class of utility

functions, a Ramsey-Euler policy is optimal as long as the propensity to consume is bounded

away from zero. In particular, we assume that in addition to (U.1) and (U.2), the utility

function u satisfies:

(U.3) u′(c)c is bounded on R++; in particular, there existsM ∈ R++ such that u′(c)c <
M for all c > 0.

Note that (U.3) is satisfied if u is bounded on R+.16 Of course, u′(c)cmay be be bounded
on R++ even if u is not bounded (for instance, u(c) = ln c)..

16Let u : R+ → R be a bounded, strictly concave and continuously differentiable function on R+ so that
in particular b ≤ u(c) ≤ B for all c ≥ 0, for some b,B ∈ R. Then

b− u(c) ≤ u(0)− u(c) ≤ u′(c)(−c) for all c > 0

and so:
u′(c)c ≤ u(c)− b ≤ B − b for all c > 0

i.e., the function u′(c)c is bounded on R++.
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Proposition 3 Assume (U.3). Consider a Ramsey-Euler consumption function c(y) that

is either continuous or co-monotone on R+; further,

inf
y>0

c(y)

y
> 0.

Then, c(y) is optimal.

Note that unlike Proposition 2, Proposition 3 does not require any restriction like (T.3)
on the production function; unlike Proposition 2, the proof of Proposition 3 is not based on

a "contraction" argument.

5.4 Application

The suffi cient conditions for optimality of Ramsey-Euler policy can be useful in verifying

optimality of explicit solutions to the Ramsey-Euler functional equation for specific utility

and production functions. For instance, consider a CES utility function:

u(c) =
c1−σ

1− σ

where σ > 0, σ 6= 1. The production function is given by

f(x, r) = rx

and {rt} is a sequence of i.i.d. random variable with distribution F with support [a, b],

0 < a < b < ∞. Note that the production technology may be unproductive (at least for
certain realizations of the shock) as well as allow for unbounded expansion with positive

probability. It is assumed that

k = [ρE(r1−σt )]
1
σ < 1.

It is easy to check (and fairly well known) that the linear consumption function

c̃(y) = (1− k)y

solves the Ramsey-Euler equation for this problem. To assert that c̃(y) is optimal by veri-

fying that the consumption and investment process generated by c̃(y) satisfies the transver-

sality condition can take some work. On the other hand, by direct appealing to Proposition

2 and noting that the propensity to consume c(y)/y = 1− k is a strictly positive constant,
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we can immediately assert optimality of c̃(y).17

As new examples are developed in the future with non-linear Ramsey-Euler consumption

functions our result will continue to be useful as a way to verify optimality.

6 Conclusion

The classical version of the one sector convex model of stochastic optimal growth (Brock and

Mirman 1973) assumes that the technology is productive near zero and exhibits bounded

growth with probability one. In this framework, it has been shown that a policy function

satisfying the Ramsey-Euler condition is optimal as long it is continuous or alternatively,

if both consumption and investment are non-decreasing in current output. We outline

two counterexamples to show that this result may not hold once the classical model is

generalized to accommodate production functions that may be globally unproductive for

bad realizations of the shock or allow for unbounded expansion of consumption and out-

put. Our analysis indicates that a probable source of this non-optimality is low propensity

to consume exhibited by the candidate policy function. We show that in our more gen-

eral framework, a Ramsey-Euler policy function is optimal if in addition to continuity or

monotonicity properties, we can also verify a condition on the propensity to consume. For

production functions with multiplicative shock, our condition simply requires the propen-

sity to consume be bounded away from zero; a generalization of this lower bound is shown

to be suffi cient for optimality in the case of non-multiplicative shock; weaker conditions are

outlined for a restricted class of utility functions that includes bounded utility. The suf-

ficient conditions for optimality outlined in this paper can be significantly easier to verify

than the transversality condition.

Our analysis is a step forward in characterizing alternative conditions for optimality

in a class of dynamic optimization models that includes the stochastic growth model. It

will be useful to extend our analysis to stochastic growth models with "unbounded shocks"

(see, Stachurski 2002, Nishimura and Stachurski 2005, Kamihigashi 2007) and irreversible

investment (see, Olson 1989).

17 It is worth noting for this family of utility and production functions, under certain parametric restrictions
it is possible to derive non-linear policy functions that satisfy the Ramsey-Euler condition (similar to Example
1 in Section 4) but do not satisfy our suffi cient conditions for optimality; these non-linear policies are in
fact, not optimal.
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7 Appendix

7.1 Details of Example 1: Inverse properties of ψ and φ

We show that the functions ψ and φ are inverses of each other. We first show that ψ(φ(y)) =

y for all y ≥ 0. To this end, let us note that, by (5), for all y ≥ 0,

φ(y) =
(1 + 4y)− (1 + 8y)

1
2

8

=

[
(1 + 8y)

1
2 − 1

4

]2

which yields:

(1 + 8y) = {1 + 4[φ(y)]
1
2 }2

= 1 + 16φ(y) + 8[φ(y)]
1
2

and this implies:

y = 2φ(y) + [φ(y)]
1
2 = ψ(φ(y))

by using (7) and noting that φ(y) ≥ 0 for all y ≥ 0.

Next, we show that φ(ψ(c)) = c for all c ≥ 0. We start with the following identity for

all c ≥ 0 :

[1 + 4c
1
2 ]2 = [1 + 8(2c+ c

1
2 )]

so that:

[1 + 4c
1
2 ] = [1 + 8(2c+ c

1
2 )]

1
2

which can be rewritten as:

[2 + 8c
1
2 ]− 2[1 + 8(2c+ c

1
2 )]

1
2 = 0 (14)

Adding 16c to both sides of (14), we get:

2 + 8[2c+ c
1
2 ]− 2[1 + 8(2c+ c

1
2 )]

1
2 = 16c (15)

Using the definition of ψ in (7), we can rewrite (15) as:

[2 + 8ψ(c)]− 2[1 + 8ψ(c)]
1
2 = 16c
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so that:
[1 + 4ψ(c)]− [1 + 8ψ(c)]

1
2

8
= c

and using the definition of φ in (5), we obtain:

φ(ψ(c)) =
[1 + 4ψ(c)]− [1 + 8ψ(c)]

1
2

8
= c.

7.2 A Useful lemma

Lemma 1 Consider a Ramsey-Euler consumption function c(y) such that

R.1 x(y) = y − c(y) is non-decreasing in y on R+
R.2 For any interval [y′, y′′] ⊂ R++, inf{c(z) : z ∈ [y′, y′′]} > 0.

Further, assume that the consumption and investment processes generated by c(y) satisfy

the Transversality Condition (TC). Then, c(y) is optimal.

Proof. Let Y = R+. Fix initial stock ỹ ∈ Y with ỹ > 0. Consider the stochastic process

of output, consumption and investment {yt(ỹ, ω), ct(ỹ, ω), xt(ỹ, ω)}∞t=0 for ω ∈ Ω, hereafter

written as {yt, ct,xt}, generated by the consumption function c(y). It is easy to check that

yt > 0, ct > 0,xt > 0 for all t ≥ 0. Equality or inequalities involving these random variables

should be interpreted as holding for all ω ∈ Ω. Note that {yt, ct,xt} is feasible from ỹ. We

have to establish that it is optimal from ỹ.

Let {y
t
}, {yt} be the deterministic sequences defined by:

y
0

= y0 = ỹ, y
t+1

= f(x(y
t
)), yt+1 = f(x(yt)), t ≥ 0. (16)

Note that f(.), f(.) are nondecreasing on Y . Further, from R.1, it is easy to check that for

all t ≥ 0:

yt ≥ yt ≥ yt (17)

As x(z) > 0 for all z > 0 and f(x) > 0, f(x) <∞ for all x > 0,

0 < y
t
≤ yt <∞ for all t ≥ 0. (18)

Let {ct}, {ct} be the sequences defined by:

ct = inf{c(z) : z ∈ [y
t
, yt]}, ct = sup{c(z) : z ∈ [y

t
, yt]} for all t ≥ 0. (19)

Using R.2, we have, ct > 0 for all t ≥ 0; further, ct ≤ yt < ∞ for all t ≥ 0. Using (17) and

(19), we have:

∞ > ct ≥ ct = c(yt) ≥ ct > 0 for all t ≥ 0. (20)

23



Thus, for every t ≥ 0 :

−∞ < u(ct) ≤ u(ct) ≤ u(ct) <∞ (21)

so that for each t, u(ct) is a bounded Ft−measurable function and has finite expectation.
Using (20), we can define the stochastic price process {pt(y, ω)}, hereafter written as

{pt}, by:
pt = ρtu′(ct)) for t ≥ 0. (22)

As before, equality or inequalities involving these random variables should be interpreted

as holding for all ω ∈ Ω. It follows (from (20)) that for every t ≥ 0,

0 < ρtu′(ct) ≤ pt ≤ ρtu′(ct) <∞

i.e., pt is a bounded Ft−measurable random variable (and hence integrable) for each t.

For all c ≥ 0, and all t ≥ 0, we have by concavity of u and (22),

ρtu(ct)− ptct ≥ ρtu(c)− ptc (23)

so that for each t ≥ 0, we have:

Eρtu(ct)− Eptct ≥ Eρtu(ĉt)− Eptĉt (24)

for every bounded Ft measurable random variable ĉt ≥ 0 defined on Ω. Note that (using

(21)), Eρtu(ct) is finite; further, as ĉt is a bounded random variable, Eρtu(ĉt) on the right

hand side of (24) is well defined though it may be −∞.
Using the Ramsey-Euler condition (RE) and (22), one can see that18:

pt = ρtu′(ct)) = E{pt+1f ′(xt, rt+1)|Ft} (25)

Using the concavity of f (in x) we have for all x ≥ 0 and all t ≥ 0,

f(x, rt+1)− f(xt, rt+1) ≤ f ′(xt, rt+1)(x− xt)

so that:

pt+1f(x, rt+1)− pt+1f(xt, rt+1) ≤ pt+1f ′(xt, rt+1)(x− xt) (26)

Thus, for every bounded Ft measurable random variable x̂t ≥ 0 defined on Ω, taking the

18Strictly speaking, this involves switching from conditional expectation with respect to the distribution
function F to a conditional expectation with respect to a sub sigma field.
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conditional expectation with respect to Ft in (26) with x = x̂t we get:

E{pt+1f( x̂t, rt+1)|Ft} − E{pt+1f(xt, rt+1)|Ft}

≤ E{pt+1f ′(xt, rt+1)( x̂t − xt)|Ft}

= ( x̂t − xt)E{pt+1f ′(xt, rt+1)|Ft} = pt( x̂t − xt) (27)

where the third line uses the fact that x̂t and xt are Ft measurable and the last line in (27)
uses (25). Transposing terms in (27), for every bounded Ft measurable x̂t ≥ 0, we have:

E{pt+1f(xt, rt+1)|Ft} − ptxt ≥ E{pt+1f( x̂t, rt+1)|Ft} − ptx̃t (28)

so that:

E{pt+1f(xt, rt+1)} − E{ptxt} ≥ E{pt+1f(x̂t, rt+1)} − E{pt x̂t} (29)

Next, one can show that for any feasible stochastic process of output, consumption and

investment {ŷt, ĉt, x̂t} from initial stock ỹ, and for every T ∈ N

E{
T∑
t=0

ρtu(ĉt)} − E{
T∑
t=0

ρtu(ct)} ≤ E{pTxT } − E{pT x̂T } (30)

To see (30), note that from (24) we have for t ≥ 1

Eρtu(ĉt)− Eρtu(ct)

≤ Eptĉt − Eptct = [Eptŷt − Eptx̂t]− [Eptyt − Eptxt]

= [Eptŷt − Ept−1x̂t−1] + [Ept−1x̂t−1 − Eptx̂t]

−[Eptyt − Ept−1xt−1]− [Ept−1xt−1 − Eptxt]

≤ [Ept−1x̂t−1 − Eptx̂t]− [Ept−1xt−1 − Eptxt]

where the first inequality uses (24) and the second inequality uses (29).

The transversality condition (TC) implies that

E{ptxt} → 0 as t→∞ (31)

For any feasible stochastic process of output, consumption and investment {ŷt, ĉt, x̂t} from
initial stock y,

E

{ ∞∑
t=0

ρtu(ĉt)

}
− E

{ ∞∑
t=0

ρtu(ct))

}
= lim

T→∞
E

{
T∑
t=0

ρtu(ĉt)−
T∑
t=0

ρtu(ct))

}
≤ lim

T→∞
sup [E{pTxT } − E{pT x̂T }] ≤ 0.
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where the equality follows from (1), the first inequality uses (30) and the second inequality

uses the transversality condition (31). Hence, c(y) is optimal. This completes the proof of

the lemma.

7.3 Proof of Proposition 2

Proof. We claim that under the hypothesis of Proposition 2, we always have:

R.1 x(y) is non-decreasing on R+
R.2 For any interval [y′, y′′] ⊂ R++, c(y′, y′′) > 0.

R.1 and R.2 are obvious if c(y) is co-monotone. On the other hand, if c(y) is continuous,

R.2 follows immediately and one can show that R.1 holds i.e., x(y) is non-decreasing in y.19

The proof will use the properties R.1 and R.2 of the policy function.

Fix any y0 > 0 and let {ct}, {xt} and {yt} be the stochastic processes of consumption,
investment and output generated by c(y) given y0.We will show that under the hypothesis of

the proposition, ρtE[u′(ct)yt]→ 0 as t→∞. As xt ≤ yt this implies that the transversality
condition (TC) holds. As R.1 and R.2 hold, Lemma 1 then implies that {ct}, {xt} and {yt}
are optimal from y0; thus c(y) is an optimal consumption function.

Recall z1, z2 as defined in assumption (T.3)(i). There are (only) two possibilities re-
garding the behavior of x(y) near zero:

(A.i) There exists a sequence {yn}∞n=1 → 0, yn > 0 for all n and

f(x(yn))

yn
≥ 1 for all n.

(A.ii) There exists ε̂ ∈ (0, z1) such that

f(x(y))

y
=
f(x(y), a)

y
< 1 for all y ∈ (0, ε̂).

There are (only) two possibilities regarding the behavior of the policy function for large

y:

(B.i) There exists a sequence {wn}∞n=1, wn > 0 for all n, {wn}∞n=1 →∞ and f(x(wn))
wn ≤ 1

for all n.

(B.ii) There exists ŷ > z2 such that
f(x(y))

y = f(x(y),b)
y > 1 for all y ≥ ŷ.

The rest of the proof considers four cases based on combinations of these possibilities.

19To see this, suppose x(y1) > x(y2) for 0 ≤ y1 < y2. Then, x(y1) > 0 so that y1 > 0. As x(y) = y−c(y) is
continuous and x(0) = 0, there exists y3 ∈ (0, y1) such that x(y3) = x(y2). Then, c(y3) < c(y2). x(y3) = x(y2)
implies that the right hand side of the Ramsey-Euler condition (RE) evaluated y = y2 and y = y3 are equal,
implying u′(c(y3)) = u′(c(y2)) that contradicts c(y3) < c(y2).
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CASE 1: (A.i) and (B.i) hold.

There exists N such that yN ≤ y0 ≤ wN . Fix N. Using R.1 and
f(x(yN ))

yN
≥ 1, f(x(w

N ))
wN

≤
1, it is easy to check that yN ≤ yt ≤ wn for all t. Further, using R.2, we have ct ≥
c(yN , wN ) > 0 with probability one and for all t. Thus,

0 ≤ E[u′(ct)yt] ≤ E[u′(c(yN , wN ))wN ] for all t,

so that ρtE[u′(ct)yt]→ 0 as t→∞.
CASE 2. Suppose that the candidate policy function satisfies (A.ii) and (B.ii).

As (A.ii) holds, for all y ∈ (0, ε̂),

f(x(y))

y
=
f(x(y), a)

y
< 1. (32)

First, consider the case where f ′(0, a) > τ0. Note that f ′(0, a) may equal +∞. Choose
λ0 ∈ (0, 1) such that

τ0
λ0

< f ′(0, r). (33)

Using (32) and (33),

lim
y→0

sup
f(x(y), a)

y

τ0
f ′(x(y), a)

≤ lim
y→0

sup
τ0

f ′(x(y), a)
< λ0. (34)

Next, consider the case where f ′(0, a) ≤ τ0.Using assumption (T.3)(ii), τ0 < ∞ so that

f ′(0, a) <∞. The latter implies

lim
x→0

f(x, a)

f ′(x, a)x
= 1

so that (as limy→0 x(y) = 0)

f(x(y), a)

f ′(x(y), a)x(y)
→ 1 as y → 0 (35)

Let α = lim infy→0
c(y)
y . Using Condition (GP1),

lim
y→0

sup
x(y)

y
= 1−

(
lim
y→0

inf
c(y)

y

)
= 1− α < 1

τ0
(36)
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so that

lim
y→0

sup

[
f(x(y), a)

y

τ0
f ′(x(y), a)

]
= lim

y→0
sup

x(y)

y
τ0

(
f(x(y), a)

f ′(x(y), a)x(y)

)
= (1− α)τ0 < 1 (37)

where we use (35) and (36) in the last line. Choose λ such that

λ ∈ (λ0, 1), if f ′(0, a) > τ0

∈ ((1− α)τ0, 1) if f ′(0, a) ≤ τ0.

Using (34)and (37), then there exists σ and ε1, 0 < ε1 < ε̂ , σ > 0, such that

f(x(y), a)

y

(1 + σ)τ0
f ′(x(y), a)

< λ for all y ∈ (0, ε1). (38)

Fix such σ, ε1. From the definition of τ0,there exists ε, 0 < ε < ε1, such that

η(x)

η(x, a)
≤ (1 + σ)τ0 for all x ∈ (0, ε)

so that
η(x, r)

η(x, a)
≤ (1 + σ)τ0 for all x ∈ (0, ε), r ∈ A. (39)

As (B.ii) holds, it must be the case that

lim
x→∞

f(x, b)

x
≥ 1

so that

lim
x→∞

f ′(x, b)x

f(x, b)
= 1. (40)

Under assumption (T.3)(ii), τ∞ <∞ and using condition (GP2)

α = lim
y→∞

inf
c(y)

y
> 1− 1

τ∞

so that

τ∞(1− α) < 1.
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Choose ζ > 0, 0 < β < 1 such that

λ̃ = τ∞(1 + ζ)
1− βα
β

< 1. (41)

Fix ζ, β. Using (40), there exists y > z2 such that for all y ≥ y

f ′(x(y), b)x(y)

f(x(y), b)
≥ β

c(y)

y
≥ βα,

and
η(x(y))

η(x(y), b)
≤ (1 + ζ)τ∞.

which implies that for all y ≥ y

η(x(y))

η(x(y), b)

{
f(x(y), b)

f ′(x(y), b)x(y)

}
x(y)

y
≤ (1 + ζ)τ∞(

1− βα
β

) = λ̃. (42)

where λ̃ is defined in (41).

Let Et denote the expectation conditional on information available in period t. Observe

that

Et[u
′(c(yt+1))yt+1]

= Et[u
′(c(yt+1))yt+1I{yt<ε}] + Et[u

′(c(yt+1))yt+1I{yt>y}]

+Et[u
′(c(yt+1))yt+1I{yt∈[ε,y]}]

Observe that

Et[u
′(c(yt+1))yt+1I{yt<ε}]

= Et

[
u′(c(yt+1))f

′(xt, rt+1)yt{
f(xt, rt+1)

yt

1

f ′(xt, rt+1)
}I{yt<ε}

]
= Et

[
u′(c(yt+1))f

′(xt, rt+1)yt{
xt
yt

η(xt, rt+1)

η(xt, a)
η(xt, a)}I{yt<ε}

]
≤ Et

[
u′(c(yt+1))f

′(xt, rt+1)yt{
xt
yt

(1 + σ)τ0
1

η(xt, a)
}I{yt<ε}

]
, using (39)

= Et

[
u′(c(yt+1))f

′(xt, rt+1)yt{
f(xt, a)

yt

1

f ′(xt, a)
(1 + σ)τ0}I{yt<ε}

]
≤ λEt

[
u′(c(yt+1))f

′(xt, rt+1)ytI{yt<ε}
]
, using (38). (43)
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Also,

Et[u
′(c(yt+1))yt+1I{yt>y}]

= Et

[
u′(c(yt+1))f

′(xt, rt+1)yt

{
f(xt, rt+1)

f ′(xt, rt+1)xt

}
xt
yt
I{yt>y}

]
= Et

[
u′(c(yt+1))f

′(xt, rt+1)yt

{
η(xt, rt+1)

η(xt, b)

}
η(xt, b)

xt
yt
I{yt>y}

]
≤ Et

[
u′(c(yt+1))f

′(xt, rt+1)yt
η(xt)

η(xt, b)

{
f(x(yt), b)

f ′(x(yt), b)x(yt)

}{
x(yt)

yt

}
I{yt>y}

]
≤ λ̃Et

[
u′(c(yt+1))f

′(xt, rt+1)ytI{yt>y}
]
, using (42) (44)

Finally, given fixed ε, y ∈ R++as defined above, yt ∈ [ε, y] implies that with probability one,

yt+1 ∈ [f(x(ε)), f(y)] ⊂ R++. Therefore for all t,

Et[u
′(c(yt+1))yt+1I{yt∈[ε,y]}]

≤ u′(c(f(x(ε)), f(y)))f(y) = Q′. (45)

where 0 < Q′ <∞, using R.2. Let λ̂ = max{λ, λ̃}. Then, λ̂ ∈ (0, 1) and using (43),(44) and

(45)

ρt+1Et[u
′(c(yt+1))yt+1]

= ρt+1Et[u
′(c(yt+1))yt+1I{yt<ε}] + ρt+1Et[u

′(c(yt+1))yt+1I{yt>y}]

+ρt+1Et[u
′(c(yt+1))yt+1I{yt∈[ε,y]}]

≤ ρt+1λ̂[Et[u
′(c(yt+1))f

′(xt, rt+1)yt(I{yt<ε} + I{yt>y})] + ρt+1Q′

≤ λ̂ρt+1Et[u
′(ct+1)f

′(xt, rt+1)]yt + ρt+1Q′

= λ̂ρtu′(ct)yt + ρt+1Q′ (46)

where the last equality follows from the Ramsey-Euler equation (RE). Taking unconditional

expectation in (46) we have:

ρt+1E[u′(c(yt+1))yt+1]

≤ λ̂ρtE[u′(ct)yt] + ρt+1Q′

for all t, which implies that ρtE[u′(ct)yt]→ 0 as t→∞.
CASE 3. Suppose that the candidate policy function satisfies (A.i) and (B.ii).

As in CASE 1, as (A.i) holds, there exists N such that yN ≤ yt with probability one for
all t. As (B.ii) holds, using an identical argument as in CASE 2 (and with some abuse of
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notation), condition (GP2) ensures that there exists 0 < β < 1, ζ > 0, y > 0 such that

0 < λ̃ = (1 + ζ)τ∞(
1− βα
β

) < 1

and
η(x(y))

η(x(y), b)

{
f(x(y), b)

f ′(x(y), b)x(y)

}
x(y)

y
≤ λ̂ for all y > y

so that

Et[u
′(c(yt+1))yt+1I{yt>y}]

≤ λ̃Et
[
u′(c(yt+1))f

′(xt, rt+1)ytI{yt>y}
]

Further,

Et[u
′(c(yt+1))yt+1I{yt∈[ε,y]}] ≤ u

′(c(f(x(yN )), f(y)))f(y) = Q′′.

where 0 < Q′′ <∞. Thus

Et[u
′(c(yt+1))yt+1]

= Et[u
′(c(yt+1))yt+1I{yt>y}] + Et[u

′(c(yt+1))yt+1I{yt∈[yn,y]}]

≤ λ̃Et[u
′(ct+1)f

′(xt, rt+1)]yt +Q′′

and the rest of the proof is identical to CASE 2.

CASE 4. Suppose that the candidate policy function satisfies (A.ii) and (B.i).

As (B.i) holds, using an indentical argument as in the proof for CASE 1, there exists

n such that yt ≤ wn with probability one for all t. As condition (A.ii) holds, arguments

identical to those used in Case 2 imply that (with some abuse of notation) there exists

ε, λ, 0 < ε < ε̂ ,0 < λ < 1 such that

η(x(y), r)

η(x(y), a)
≤ (1 + σ)τ0,

f(x(y), a)

y

(1 + σ)τ0
f ′(x(y), a)

< λ for all y ∈ (0, ε).

and therefore, using identical arguments leading to (43), we have

Et[u
′(c(yt+1))yt+1I{yt<ε}] ≤ λEt

[
u′(c(yt+1))f

′(xt, rt+1)ytI{yt<ε}
]
.
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Further,

Et[u
′(c(yt+1))yt+1I{yt≥ε}] = Et[u

′(c(yt+1))yt+1I{ε≤yt≤wn}]

≤ u′(c(f(x(ε)), f(x(wN ))f(wN ) = Qˆ.

where 0 < Qˆ <∞ using R.1. Then,

Et[u
′(c(yt+1))yt+1]

= Et[u
′(c(yt+1))yt+1I{yt<ε}] + Et[u

′(c(yt+1))yt+1I{ε≤yt≤wn}]

≤ λEt[u
′(ct+1)f

′(xt, rt+1)]yt +Qˆ,

and the rest of the proof is identical to Case 2. This completes the proof of Proposition 2.

7.4 Proof of Proposition 3

Proof. Using identical arguments as at the beginning of the proof of Proposition 2, one
can show that properties R.1 and R.2 in the antecedent of Lemma 1 hold. Fix any y0 > 0

and let {ct}, {xt} and {yt} be the stochastic paths of consumption, investment and output
generated by c(y) given y0.We will show that under the hypothesis of the proposition,

ρtE[u′(ct)xt] → 0 as t → ∞. Lemma 1 then implies that {ct}, {xt} and {yt} are optimal
from y0; thus c(y) is an optimal consumption function.Let α̂ > 0 be defined by

inf
y>0

c(y)

y
= α̂

Then, α̂ ∈ (0, 1). Observe that for any t:

ρtE[u′(ct)xt]

≤ ρtE[u′(ct)yt] ≤ ρtE[u′(αyt)yt]

= ρt
[
E(u′(αyt)αyt)

α

]
≤ ρt

[
M

α

]
which converges to 0 as t→∞.
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