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1 Introduction

Rationality is one of the main tenets of modern economics and though it

has proven fruitful in all areas of economics, it has recently been subject to

attacks both on theoretical and empirical grounds. In particular, the modern

theory of consumption under liquidity constraints and uncertainty, which is one

of the main building blocks of modern macroeconomics, has been criticized

for its rationality requirements. For example, Carroll (2001) presents this

theory and argues that “when there is uncertainty about the future level of

labor income, it appears to be impossible under plausible assumptions about

the utility function to derive an explicit solution for consumption as a direct

(analytical) function of the model’s parameters”. Similarly, Allen and Carroll

(2001) admit that “finding the exact nonlinear consumption policy rule (as

economists have done) is an extraordinarily difficult mathematical problem”.

In order to answer this line of critiques, economists have tried to pro-

vide bounded rationality foundations to optimal behavior, especially within

game theory (Fudenberg and Levine, 1998) and macroeconomics (Evans and

Honkapohja, 2001; Sargent, 1993). Still, the study of how agents learn the

optimal policy to an infinite horizon dynamic programming problem under

uncertainty, and the consumption function in particular, has been ignored ex-

ept for a few exceptions (Allen and Carroll, 2001; Evans and McGough, 2009;

Howitt and Özak, 2009; Lettau and Uhlig, 1999).1 While theoretical results

1There is a large literature which studies dynamic programming problems in which
agents do not hold Rational Expectations, but are otherwise fully rational. The objective
of this literature is to understand the conditions under which the expectational mechanism
held by agents converges to Rational Expectations (Sargent, 1993). This is not the problem
I am alluding to here. In this setting agents are not able or willing to solve the optimal
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have been mixed, empirical and experimental evidence suggests that agents do

learn to behave as if they had solved the optimal consumption problem (see

Brown, Chua and Camerer, 2009, and references therein).

In this paper I study an infinite horizon optimal consumption problem

under uncertainty, liquidity constraints, and bounded rationality. I follow the

previous literature in assuming that boundedly rational agents use a consump-

tion rule that is linear in wealth.2 I endow agents with a learning algorithm,

which I call the HO-algorithm, that is a generalization of the one studied in

the numerical exercise of Howitt and Özak (2009). I show that the behavior

of agents using this learning scheme converges to a unique consumption rule

that has good welfare and stability properties. In particular, in a steady state

agents would not have an incentive to choose a different linear consumption

function, since their welfare under the current rule would be maximal. In con-

trast to the previous literature, these results are based on analytical and not

numerical tools. Additionally, I extend the analysis to situations where the

time horizon is finite. In particular, I study the properties of applying this

algorithm during a finite period of time, when agents have a life-cycle profile

of income. The results suggest that the algorithm keeps its properties in this

setting.

consumption problem, even if they had the correct expectational mechanism.
A related literature studies the problem of convergence of the computational methods

applied to solve numerically dynamic programming problems, for example Puterman and
Brumelle (1979) and Santos and Rust (2004). Although I am not studying this problem,
one could apply the methods of this paper to find the optimal partition of the state space
or to approximate the optimal solution.

2Gabaix (2011) has suggested that boundedly rational agents only use “sparse” rules of
behavior. In this paper, the assumption is that agents focus only on wealth and disregard
all other variables. As can be seen from the results and proofs below, they can be extended
to include linearity in other variables, without affecting the results.
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My analytical results generalize the numerical ones found by Howitt and

Özak (2009), while overcoming the two main drawbacks of their setting. In

particular, it is not clear if one should expect their results to hold in other set-

tings. Additionally, they assume consumers can perform some complex math-

ematical operations, which might not be a desirable assumption in a bounded

rationality setting. I solve these problems by showing that in a general class of

consumption problems under uncertainty and liquidity constraints, agents us-

ing variations of the HO-algorithm learn an optimal consumption rule. I show

that the HO-algorithm converges to the unique asymptotically stable point

of a particular ordinary differential equation (ODE) and that this stationary

point is “optimal”. In particular, this stationary consumption rule maximizes

her steady state expected life-time utility under the stationary distribution

generated by her consumption rule, so that she has no incentives to change it

in a steady state.

This implies that applying the HO-algorithm to any initial linear consump-

tion rule in an uncountable and compact set, for different assumptions about

an agents’ rationality, her level of risk-aversion or impatience, or her income

process, will with probability one converge to the globally asymptotically sta-

ble stationary point of this ODE, which is optimal. This not only solves the

critiques encountered by Howitt and Özak (2009) and some of the problems

raised in the literature, but might provide new approaches to the study of

models with bounded rationality.

The approach to learning that I follow is based on Euler-equations, where

agents change their behavior in response to differences between their experi-
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enced marginal utility in one period and next period’s discounted marginal

utility. Thus, in this paper agents react to mistakes in their Euler equation,

and adjust their consumption rule if it failed to equalize the marginal utilities

of consumption between yesterday and today. This follows from the idea that

agents regret their consumption decision if their Euler equation is not satisfied.

This approach is close in spirit to “learning direction theory” (Selten and

Buchta, 1999; Selten and Stoecker, 1986) and “regret theory” (Hart, Mas-Colell

and Babichenko, 2013; Loomes and Sugden, 1982), which have been proposed

as an explanations for behavior observed in various experimental settings.

According to these theories, an agent’s success or failure changes her behavior

in the direction that increases her expected payoff in the following opportunity

she has for action. While both learning direction theory, regret theory, and

the HO-algorithm explain the direction of change, the HO-algorithm also tells

agents by how much they ought to change their behavior. This might suggest

the results obtained by Howitt and Özak (2009) depend on the specific details

of their implementation. I show bellow that this is not the case and that

the algorithm can be varied in many dimensions without affecting its main

optimality and convergence properties.

There are various reasons why the HO-algorithm seems like a good candi-

date for behavior under bounded rationality. First, it does not require com-

plex optimizing behavior by agents, which is a fundamental requirement of

any theory of bounded rationality (Selten, 2001). Agents in this theory are

only required to compare two marginal utilities in order to make changes. In

this aspect it is similar to aspiration adaptation theory (Selten, 1998), rein-
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forcement learning (Börgers and Sarin, 1997), and learning direction theory

(Selten and Stoecker, 1986). This simplicity lowers the cognitive capabilities

required of agents. Second, it has low informational and computational re-

quirements, which are independent of the number of states or possible rules.

This is extremely important, since both requirements put a heavy burden on

agents’ cognitive abilities. In particular, agents only need to remember a small

amount of information and know basic algebraic operations. Third, in order to

apply the algorithm, agents do not need to fully understand the economic en-

vironment in which they are embedded, nor the effects of changes in it. Thus,

it gives them guidance even in unfamiliar situations. Fourth, unlike some

models of bounded rationality, which are qualitative in nature (e.g. learning

direction theory), the quantitative nature of the HO-algorithm allows its use

in applied macroeconomic models. Fifth, its similarity to learning direction

and regret theory gives it empirical relevance. Finally, as I will show below,

various versions of the algorithm can easily accommodate different levels of

rationality.

My approach differs from the one used by Lettau and Uhlig (1999) and

Allen and Carroll (2001), who use the accumulated performance of a rule as

measured by the discounted sum of utilities as a base for their learning mech-

anisms. In these papers, agents estimate the value function of their respective

problem in order to select the best rule. Regrettably, the algorithms put for-

ward in these papers do not converge to the optimal rule or only converge very

slowly. Thus they are “not an adequate description of the process by which

consumers learn about consumer behavior” (Allen and Carroll, 2001, p.268)
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The approach in these two papers has three main drawbacks. First, they

require the set of rules and states to be finite. Second, the memory, processing,

and rationality requirements increase in the number of rules and states. Third,

they cannot determine the welfare properties of the rules that are learnt, es-

pecially when the rational rule is not available or if the rational rule is not

equivalent to a mix of the available rules.

This paper is most closely related to Evans and McGough (2009), who use

Euler equation and shadow price learning schemes. In their approach, agents

are forward looking and forecast either shadow prices or the control variable

and then choose the control variable optimally according to the first order

conditions in their problem. In particular, they show that agents using Euler

equation or shadow price learning can learn the optimal solution to a linear

quadratic dynamic programming under the same conditions required for a fully

rational solution to be found. Their results are encouraging for the whole re-

search agenda. Still, they are obtained under strong rationality assumptions,

since agents need to understand their dynamic programming problem well,

keep track of many parameters, and know econometric techniques. Further-

more, the optimality results hold only in this case. It is not clear what kind

of properties these learning schemes have in the general case when the fully

rational solution is not linear or if the agents have a misspecified model.

The paper proceeds as follows: Section 2 presents the model, section 3

introduces the learning algorithm, section 4 studies the convergence, stability,

and optimality properties of the algorithm, section 5 presents various exten-

sions and variations of the model, as well as simulations for the finite horizon
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case, and section 6 concludes. All technical proofs are left for the online-

appendix.

2 The model

Time evolves discretely and is indexed by t. Agents are infinitely lived and

born with an initial wealth w0 > 0. Every period t they consume an amount

ct out of their current wealth wt, receive interest on their savings and before

taking the next consumption decision, get an income yt+1. So, their wealth

evolves according to

wt+1 = R
(

wt − ct
)

+ yt+1, (2.1)

where R > 1 is the interest rate factor on wealth held at the end of each

period.

Assumption A. The income process, {yt} is such that yt ∈ Y ≡ [y, ȳ), where

0 < y < ȳ < ∞, is identically and independently distributed across periods

with distribution Γ that is absolutely continuous with a lower semicontinuous

density γy with full support on Y .

Each period’s consumption level ct gives her a per period level of utility

u(ct). The utility function u(·) is continuous, strictly increasing, concave, and

three times continuously differentiable. I also assume that the utility function

and its derivatives are φ-bounded, i.e. there exists constants K, n∗ ∈ N and
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some continuous function φ : R+ → R++,
3 such that

‖u‖φ =sup
|u(c)|

φ(c)
< K, and

∥

∥u(n)
∥

∥

φ
=sup

∣

∣

∣

dnu(c)
dcn

∣

∣

∣

φ(c)
< K, for all n ≤ n∗, n∗ ≥ 3,

(2.2)

where φ(·) is a continuous function for which the level sets

Cφ = {w ∈ R+ | φ(w) ≤ d, d ∈ R+} are compact. Clearly, any utility func-

tion that is bounded and has bounded derivatives satisfies these conditions.

The agent discounts her per period utility at a rate β ∈ (0, 1), so that her

lifetime utility level is given by U =
∑∞

t=0 β
tu(ct).

I assume agents use a linear consumption rule and may be liquidity con-

strained, which implies that their current consumption is given by

cbt(w) ≡ cb(αt, w) ≡ cb(α0
t , α

1
t , w) = min

{

α0
t + α1

tw,w
}

(2.3)

where (α0
t , α

1
t ) ∈ Λ ≡ [0, ȳ/R] × [(R − 1)/R, 1].4 Below I will endow agents

with a learning algorithm that will tell them how to change their consumption

rule across periods based on their consumption experience.

For each α let w̃α denote the level of wealth below which the consumer is

liquidity constrained, so that w̃α = α0/(1−α1). Also, let wα and w̄α denote the

unique asymptotically stable stationary levels of wealth the consumer would

3I assume the same K and φ satisfy the conditions below, but one can allow for different
functions φ to satisfy each of them.

4Although one could allow any finite upper bound on α0
t , ȳ/R ensures that the agent will

not always be liquidity constrained. To see this, notice that if α0
t > ȳ/R, then α0

t /(1−α1
t ) >

ȳ, so that after some finite time period the agent will become liquidity constrained forever.
This clearly cannot be optimal.
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attain if her income was always equal to y or ȳ respectively. Thus,

wα =yIw̃α≥y +
y − Rα0

1− R(1− α1)
Iw̃α<y, w̄α =

ȳ − Rα0

1−R(1− α1)
<∞, (2.4)

where Ix equals one if condition x is met and zero otherwise.

Figure 1: Dynamics of wealth under a linear consumption function

wt+1

wtw0

w1

w2w3

w4

w5

w6

wt+1 = wt

wt+1 = R(wt − cb(α,wt)) + ȳ

wt+1 = R(wt − cb(α,wt)) + y

ȳ

y

w̃α

w̃α

wα w̄α

Figure 1 shows the dynamics of wealth when the agent uses a fixed con-

sumption rule such that w̃α ∈ (y, ȳ). In particular, the lines representing the

dynamics of wealth when income is fixed at y and ȳ delimit the region where

her wealth can evolve. The points where these lines intersect the 45 degree line

determine the location of wα and w̄α. Clearly, for each fixed level of income,

the wealth dynamics generated by the budget constraint imply the existence

of a unique asymptotically stable stationary level of wealth that belongs to

the set [wα, w̄α]. Thus, as can be seen in the figure, starting at any wealth
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level w0 /∈ [wα, w̄α], the stochastic dynamics quickly move wealth towards the

set [wα, w̄α], from which it can never leave. In particular, notice that wealth

can never become smaller than wα, since at this level of income, the agent will

consume all her current wealth, and receive a level of income at least as big

as wα. On the other hand, if she has a level of wealth w̄α, she will choose

an amount of consumption such that for any level of income, her wealth level

next period will be at most w̄α again.

This result implies the following theorem:5

Theorem 2.1. If assumption A holds and the consumer uses a fixed consump-

tion rule with parameter α, then there exists a unique stationary distribution

of wealth πα(w), which for any A ⊆ R+ satisfies

πα(A) =















> 0 if A ∩ [wα, w̄α] 6= ∅

= 0 if A ∩ [wα, w̄α] = ∅

, πα

(

[wα, w̄α]
)

= 1. (2.5)

Additionally, as t→ ∞, the consumer’s wealth distribution converges to πα.

If agents are learning to consume using some algorithm, then the param-

eters of their consumption function will vary across time, i.e. αt+1 = g(αt),

and so will the invariant distribution and all the parameters that depend on

αt. Clearly, if the learning algorithm converges to some αe ∈ Λ, i.e. αt → αe,

then παt
→ παe , w̃αt

→ w̃αe, wαt
→ wαe , and w̄αt

→ w̄αe . In the following

5In the appendix I prove a more general version of this theorem. The strength of that
theorem is that it does not require wealth to be bounded for the existence of a unique
ergodic distribution and it provides an easily verifiable condition for the existence of a
unique invariant distribution that can be applied to other types of consumption functions
or to more general Markov processes.
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two sections I introduce and study the convergence properties of a learning

algorithm and the welfare properties of its stationary consumption rule.

3 Learning

I assume that agents adapt their rules in response to past mistakes in their

behavior. The main difficulty boundedly rational agents face is that they do

not know the value function of following a certain rule αt. This implies that

they need some other measure of adjustment.

As a first approximation, I assume that agents are sophisticated enough to

comprehend that if they were not liquidity constrained, they could have raised

their utility in period t + 1, by lowering their consumption in period t by

following a different rule. In particular, once agents have consumed in period

t + 1, they compare the discounted marginal utility generated by their actual

consumption in period t+ 1 using their consumption rule αt, βRu
′(cbt(wt+1)),

with the marginal utility they would have gotten with that rule in the previous

period, i.e. u′(cbt(wt)). An agent’s “regret” of using the consumption rule αt

is measured as the difference between those two measures, βRu′(cbt(wt+1)) −

u′(cbt(wt)).

So, if an agent has positive regret, i.e. βRu′(cbt(wt+1)) > u′(cbt(wt)), she un-

derstands she should have decreased her consumption last period and increased

it in this one. Similarly, if she has a negative level of regret, she knows she

should have increased her consumption in the previous period and consumed

less in this one. So, she understands she should change her rule’s parameters
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if her regret is not zero. So, as in direction learning theory (Selten, 2004),

reinforcement learning (Börgers and Sarin, 1997), and regret theory (Loomes

and Sugden, 1982) agents react to mistakes committed in the past.6,7

Since her level of regret only tells her the direction in which she should

change her consumption, the agent still has to decide how much to change

each parameter of her consumption function. Letting M be a positive definite

matrix and {κt} a decreasing sequence of positive real numbers, I assume she

updates her consumption rule using the following equation:





α0
t+1

α1
t+1



 =





α0
t

α1
t



+ κtM
[(

βRu′(cbt(wt+1))− u′(cbt(wt))
)

u′′(cbt(wt))
]





1

wt



 IU (DG)

for all t ≥ 0, where IU is equal to one if the agent was unconstrained and zero

otherwise. Multiplying her level of regret by the second derivative of the utility

function, ensures she takes into account how her marginal utility changes when

she updates her rule. This ensures she does not overreact to regret levels, so

that she only changes her rule by little if her marginal utility might change a

lot with small changes in consumption. Additionally, if M is not the identity

matrix, she allows both rule’s parameters to change in reaction to her level of

regret weighted by her level of wealth.

Clearly, equation (DG) might cause the new parameters to be outside the

set Λ = [0, ȳ/R] × [(R − 1)/R, 1]. If that is the case, I assume agents use

6Notice that agents look to the past, but do not fully use their past experience. Below
I generalize this behavior to allow agents to react to their actual regret levels.

7As in Börgers and Sarin (1997) and Loomes and Sugden (1982), in this paper expe-
rienced regret drives behavior, since it has information regarding the effects of the choice
made by the agent. Kahneman (2011) presents other ways in which regret might affect
behavior. For example, when comparing two situations, an agent might choose an action
that minimizes her expected regret from the action. Kahneman suggests that norms affect
the perceived levels of regret. Furthermore, for him perceived regret levels might not convey
any information about the problem at hand.
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a “projection facility” to select the new parameters, i.e. some ad hoc rule to

choose an element of Λ. For example, the agent could choose not to update her

parameters whenever the new parameters are outside Λ, or choose a random

rule in Λ, or just choose a fixed element in the interior of Λ. The effect of

this projection facility is to dismiss the last observation or restart the learning

process from a new point. Clearly, the assumption that the agent knows

the parameter should remain in the set Λ implies that she understands, that

outside Λ her rule would force her to always be liquidity constrained or to

accumulate an infinite amount of wealth, none of which can be optimal.

A nice quality of the algorithm is that agents require very little information

and keep track of only a few values, independently of the number of states or of

the possible number of linear consumption rules. Additionally, it requires very

low memory, and computational and cognitive abilities on the part of agents,

especially when compared with methods that require an estimate of the value

function as in Allen and Carroll (2001), which compare many rules simulta-

neously as in Lettau and Uhlig (1999), or which use econometric techniques

to forecast (Evans and McGough, 2009). Of course, this also means the agent

does not use all the information she has available, e.g. the full distribution of

income, nor has any forward looking behavior that might suggest some kind

of precautionary behavior.

4 Convergence and Optimality

The literature on stochastic approximations to recursive algorithms (Ben-

veniste, Métivier and Priouret, 1990; Kushner and Yin, 2003) studies the
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dynamics of recursive algorithms like (DG) by using a differential equation

obtained by averaging the dynamics of the algorithm as time evolves. In this

case, the following ordinary differential equation related to the algorithm (DG)

is of interest:









dα0

∂τ

dα1

∂τ









=M

∫

W

[(

βREtu
′(cb(w′))− u′(cb(w))

)

u′′(cb(w))
]

·





1

w



 IUπα(dw) (ODE-DG)

where Et denotes the expectation under Γ, cb(w) = min {w, α0 + α1w} and

w′ = R(w − c(w)) + y. Let αe denote an equilibrium of (ODE-DG). In the

following section I study conditions for the convergence of the algorithm to αe,

as well as the optimality properties of this stationary point.

The approach I follow in order to study the convergence and optimality

properties of the equilibrium αe is based on the concept of Dφ-continuity and

Dφ-differentiability of measures (Heidergott and Vázquez-Abad, 2008). In

particular, letting Dφ be the set of all continuous and φ-bounded functions, the

transition probability Pα(w,A) = Γ(w − cbt(w) ∈ A∩Y) is Dφ-continuous if for

all w and u ∈ Dφ, the expected value of u for given w is a continuous function

of α. Similarly, Pα(w,A) is Dφ-Lipschitz continuous if the expected value of

u given w is Lipschitz continuous. Additionally, Pα(w,A) is Dφ-differentiable

with respect to αi if for any w there exists a finite signed measure P ′
αi
(w,A)

such that for any u ∈ Dφ

d

dαi

∫

Pα(w, ds)u(s) =

∫

P ′
αi
(w, ds)u(s) ∈ Dφ.

Heidergott and Vázquez-Abad (2008) show that if Pα(w,A) isDφ-differentiable
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with respect to αi, then this derivative can be written as ki(P
+
i − P−

i ) where

P+
i , P

−
i are probability measures. Clearly, the following assumption is required

in order to ensure the Dφ-continuity and differentiability of Pα.

Assumption B. γy is continuously differentiable and Lipschitz continuous.

In the appendix I prove that under assumptions A and B for every α

the invariant probability distribution πα is Dφ-continuous and differentiable

with respect to each αi. Furthermore, the Dφ derivative with respect to α0,

∂πα/∂α0 = k0(π
+
0 − π−

0 ), and with respect to α1, ∂πα/∂α1 = k1(π
+
1 − π−

1 ),

satisfy w̄k0(π
+
0 − π−

0 ) = k1(π
+
1 − π−

1 ) almost everywhere. Notice that since πα

is a probability distribution, then

∫ w̄α

w
α

∂πα
∂αi

(dw) = 0 i = 0, 1.

Before presenting the paper’s main results I introduce some additional notation

and assumptions. First, for a given w0 and a fixed consumption rule cb(α,w)

the expected life-time utility of an agent is

U(α,w0) =

∞
∑

t=0

E0

[

βtu
(

cb(α,wt)
)]

, (4.1)

where wt evolves according to (2.1). Clearly, U(α,w) ∈ Dφ and is strictly

concave. The agent’s ex-ante expected life-time utility of using rule α when

initial income is distributed according to πσ is

∫

U(α,w)πσ(dw). (4.2)
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A rule α is σ-optimal if it maximizes (4.2), i.e. it maximizes the agent’s ex-

ante expected life-time utility from using α when initial income is distributed

according to the invariant distribution generated by rule σ. Additionally, a

rule α is optimal if it is α-optimal. Optimality here requires stability of the

optimal rule in the following sense: if an agent uses an optimal rule α, then in a

steady state when wealth is distributed according to the invariant distribution

generated by that rule, πα, an optimizing agent would have no incentive to

change her behavior by selecting another rule. Clearly, this property is also

satisfied by the fully rational solution. Let

EVα ≡

∫

U(α,w)πα(dw) (4.3)

denote the agent’s ex-ante expected life-time utility from using rule α when

initial income is distributed according to the invariant distribution of α.

Second, the agent’s σ-expected squared regret is given by

∫

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)2

πσ(dw). (4.4)

Third, let c∗(w) and v(w) denote the fully rational consumption function and

the expected life-time utility generated by it. Let w̃∗ be the level of wealth

below which a fully rational agent would be liquidity constrained, i.e. c∗(w) =

w for all w ≤ w̃∗. Finally,

Assumption C. The sequence {κt}t satisfies
∑

t κt = ∞ and
∑

t κ
2
t <∞.

Under these assumptions it follows that:
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Theorem 4.1. There exists a unique rule α∗ ∈ Λ such that:

(i) α∗ is α∗-optimal, i.e. optimal.

(ii) α∗ minimizes the agent’s α∗-expected squared regret.

(iii) α∗ is an asymptotically stable equilibrium of (ODE-DG).

(iv) The learning algorithm converges to α∗ almost surely.

(v) w̃α∗ = w̃∗ and wα∗ = y.

Proof. The full proof requires various intermediate steps and the verification

of some conditions, all of which I do in the appendix. Here I explain the

proof taking those results as given. First, notice that from the continuity of

U(α,w), Weierstrass’ theorem ensures the existence of a rule ασ ∈ Λ that

is σ-optimal for each σ ∈ Λ. Strict concavity of the utility function ensures

that ασ is unique. By the Dφ-continuity of πσ, ασ is a continuous function

of σ. Thus, Brouwer’s fixed point theorem ensures the existence of α∗ that

is α∗-optimal. Second, one can show that any α that is σ-optimal belongs to

the interior of Λ and satisfies w̃α = w̃∗.8 Thus, α∗ belongs to the interior of

Λ. Given ασ it is easy to construct a contracting map that shares the same

fixed points as ασ. Then Banach’s fixed point theorem ensures uniqueness.

Third, using the properties of the fully rational consumption function and its

value function it is not difficult to show that α∗ is α∗-optimal if and only if it

minimizes α∗-expected squared regret (see appendix). Fourth, since α∗ is an

8This follows from the fact that if α is not in the interior, then w̃α /∈ [y, ȳ], and one
can find a rule that generates a higher expected life-time utility. Furthermore, this result
implies wα∗ = y.
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interior solution it must satisfy the condition that the first derivatives of the

σ-expected squared regret minimization problem with respect to α0 and α1

are simultaneously equal to zero. Fifth, using the properties of the invariant

distribution of πα∗ , one can show that α∗ minimizes the α∗-expected squared

regret if and only if it is an equilibrium of (ODE-DG). Sixth, in this case the

α∗-expected squared regret is a Lyapunov function for equation (ODE-DG),

and thus α∗ is globally asymptotically stable (Hirsch, Smale and Devaney,

2004, p. 205). Thus, the algorithm converges to α∗ (Benveniste et al., 1990).

Finally, since α∗ is α∗-optimal, it is optimal.

This theorem ensures that agent’s consumption behavior will converge to

a steady state in which wealth is distributed according to the invariant distri-

bution πα∗ . In this steady state, agent’s expected life-time utility under that

wealth distribution is maximal and agents would have no incentives to change

their behavior.

Notice that this result holds for a wide class of consumption problems. The

most stringent assumption is that y > 0, which is required in order to ensure

Lipschitz continuity of equation (ODE-DG). Thus, y = 0 can be accommo-

dated, as long as regret levels are Lipschitz continuous. For example, this

requirement is satisfied if u′(cb(w)) and u′′(cb(w)) are bounded for all α ∈ Λ

and w ∈ [y, w̄α].

Additionally, the matrixM does not play a fundamental role in this result.

Thus, it could have been replaced by some other matrix that maintained the

“directional” properties of the algorithm. That is, as long as it altered the

consumption rule in the opposite direction of the agent’s regret level. Thus,
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the algorithm studied by Howitt and Özak (2009) is a special case of this more

general algorithm.

Although convergence to the optimal linear rule is guaranteed, it is useful

to have an idea of the speed of convergence to the optimum. In particular:

Corollary 4.2. If the sequence {κt} satisfies

lim inf
n→∞

2δ
κηt
κt+1

+
κηt+1 − κbt
κ2t+1

> 0 (4.5)

where η ≤ 1 and δ > 0 is a lower bound of the norm of the Hessian matrix of

the agent’s α∗-expected squared regret, then

Eα0

(

‖αt − α∗‖
)

≤ λ(α0)κ
η
t (4.6)

for some suitable constant λ(α0). In particular, this result holds with η < 1 if

κt =
A

tζ +B
, 0 ≤ ζ ≤ 1. (4.7)

Thus, under these conditions the algorithm converges to the optimal rule

at the same rate as κt converges to zero.

5 Extensions and Variations

The previous section showed that the algorithm converges to the unique asymp-

totically stable equilibrium of (ODE-DG) and that this unique equilibrium is

also optimal. In this section I use this result to analyze variations and exten-
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sions of this algorithm. In particular, notice that the previous results provide

a simple way to analyze variants of the algorithm. Any algorithm that con-

verges to the same equilibrium will have the same properties. Furthermore,

any algorithm, which has the same related differential equation (ODE-DG)

will have the same asymptotically stable equilibrium.

5.1 Some Variations

In the original algorithm (DG) agents are backward looking, but they use

introspection instead of using their past experience directly. A first variant of

the algorithm imposes a zero-intelligence behavior, in which agents use their

actual past experience.

Corollary 5.1 (Zero-Intelligence). Assume agents’ regret is given by past expe-

rience, so that they adjust their rule given their experienced marginal utilities.

Then the algorithm is given by





α0
t+1

α1
t+1



 =





α0
t

α1
t



+ κtM
[(

βRu′(cbt(wt+1))− u′(cbt−1(wt))
)

u′′(cbt(wt))
]





1

wt



 IU , (5.1)

which has the same properties as the original algorithm. In particular, it

converges to the optimal linear rule α∗ of theorem 4.1 at the same rate.

One problem with both this version and the original one, is that agents

may not be able to start learning, or learning can be slow if they are liquidity

constrained. A first step to overcome this problem is to assume that agents

start with very low levels of α0, so that in period 0 they are not liquidity

constrained. Second, assume that when agents are determining what their
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marginal utility last period would have been, they assume they would not

have been liquidity constrained. Then:

Corollary 5.2 (Unconstrained). The algorithm is given by





α0
t+1

α1
t+1



 =





α0
t

α1
t



 + κtM
[(

βRu′(cbt(wt+1))− u′(ĉbt−1(wt))
)

u′′(ĉbt(wt))
]





1

wt



 , (5.2)

which has the same properties as the original algorithm. But, it converges to

the optimal linear rule α∗ of theorem 4.1 at a faster rate.

One problem of these backward looking algorithms is that they do not use

all available information. In particular, they do not use the information about

the distribution of their income. Clearly, forward looking behavior would take

this into account, although it would require more rationality and sophistication

by agents.

Corollary 5.3 (Forward Looking). Assume agents’ regret is based on their

expected discounted levels of marginal utility, so that





α0
t+1

α1
t+1



 =





α0
t

α1
t



+ κtM
[(

Et[βRu′(cbt(wt+1))]− u′(cbt(wt))
)

u′′(cbt(wt))
]





1

wt



 IU . (5.3)

This algorithm has the same properties as the original algorithm. In par-

ticular, it converges to the optimal linear rule α∗ of theorem 4.1 at the same

rate.

Clearly, in this setting, agents would have precautionary savings. But, this

implies that all agents that use these algorithms behave as though they had

precautionary savings motives.
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Another possible variation of the algorithm is to allow for social learning. In

particular, assume that there are N agents in the economy and denote the set

of agents by N . Each agent i has a set Ni ⊆ N of friends whose consumption

rules she can observe.9 Let Aij denote the importance agent i gives to agent j,

where Aij ∈ [0, 1], Aij > 0 if and only if j ∈ Ni, and
∑

j∈N Aij = 1. Also, let

qit denote the elements after the matrix M in one of the previous algorithms,

and αit be the parameters of the consumption rule of agent i in period t. I

assume agents now use the following algorithm

αit+1 =
∑

j∈N

Aijαjt + κtMqit, i ∈ N. (5.4)

Thus, in a sense every agent is sampling their friends’ parameters, averaging

them, and changing this average according to their own regret.

Theorem 5.4 (Social Learning). If the conditions of corollary 4.2 hold, A =

(Aij)i,j∈N is regular and diagonizable, and for some x ∈ (0, 1), (1 + x) < Nη,

then the algorithm with social learning converges to the optimal rule α∗ at

higher rates than the other versions of the algorithm.

Proof. Reorder the system of equations and denote α0
t = (α0

it)i∈N and α1
t =

(α1
it)i∈N the column vectors of agents’ consumption rules. Let qt = (qit)i∈N

denote the column vector of agents’ regrets. Additionally, let M0 and M1

denote the rows of matrix M . Then the algorithm for the population can be

9In order to simplify notation I assume every agent is a friend of herself.
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written as







α0
t+1

α1
t+1






=







A 0

0 A






·







α0
t

α1
t






+ κt







IN×N ⊗M0

IN×N ⊗M1






· qt

Since A is regular, its largest eigenvalue is r∗ = 1 and it is the only eigenvalue

with modulus 1. Additionally, any other eigenvalue has modulus less than 1.

Also, the vector e = (1, . . . , 1)′ is an eigenvector associated with r∗. As A

is diagonizable, it can be decomposed so that A = ÃΛÃ−1, where Λ is the

diagonal matrix of eigenvalues and Ã the matrix of eigenvectors of A. Let Ã

be such that the first column is e. Then, the first element on the diagonal of

Λ is r∗ = 1 and A−1 can be rewritten as A−1 = ( 1
N
e,X

′−1)′. Premultiplying

on both sides by I2×2 ⊗ Ã−1 the previous equation can be written as







α̃0
t+1

α̃1
t+1






=







ΛÃ−1 0

0 ΛÃ−1






·







α0
t+1

α1
t+1







=







Λ 0

0 Λ













α̃0
t

α̃1
t






+ κt







Ã−1 0

0 Ã−1






·







IN×N ⊗M0

IN×N ⊗M1






· q̃t,

where q̃t(α̃t) = qt(αt). But, this implies that as t → ∞, α̃it → 0 if i 6= r∗.

So, by construction as t → ∞, αit → α̃r∗t for all i ∈ N . Thus, the system of

equations for α̃r∗ ,







α̃0
r∗t+1

α̃1
r∗t+1






=







α̃0
r∗t

α̃1
r∗t






+
κt
N
Mq̃r∗t,
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is asymptotically equivalent to (DG). Thus, it is associated with the following

differential equation









dα̃r∗0

∂τ

dα̃r∗1

∂τ









=M

∫

W

q̃α̃r∗
πα̃r∗

(dw),

which has the same asymptotically stable equilibrium as (ODE-DG). But then

Eα0

(

‖α̃r∗t − α∗‖
)

≤ λ(α0)(κt/N)η < λ(α0)(κt)
η, which implies

Eα0

(

‖αit − α∗‖
)

≤Eα0

(

‖α̃r∗t − α∗
it‖
)

+ Eα0

(

‖α̃r∗t − α∗‖
)

≤(1 + x)λ(α0)(κt/N)η < λ(α0)(κt)
η.

This result might seem surprising, since in this social learning scheme

agents are not copying the “best” rule used by their friends. Nor is the result

based on some agent learning the optimal rule and “infecting” their friends

with it. As there is no way for agents to know if their friends’ rules are better

than theirs, the effect of social learning seems to be more related to the aggre-

gation of learning experience across agents. One way to see this is as follows:

in an economy with many independent agents each learning individually, the

behavior of the average agent will be close to the optimal rule. With social

learning, each agent is using some weighted average of the behavior of the

friends. This effect is similar to the effect of the average agent in the first case.
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5.2 Some Extensions

This subsection extends the model in order to analyze the effect of changing

some of the underlying hypothesis. As stated above, one can extend the anal-

ysis for example to allow for y = 0 if one is willing to assume bounded first

and second derivatives of the utility function. It is also not difficult to see that

including a random interest rate or discount factor is easily accommodated as

long as they are identically and independently distributed with a distribution

that is Lipschitz continuous and bounded.

Corollary 5.5. Assume βt and/or Rt are each identically independently dis-

tributed with βt ∈ [β, β̄] ⊂ R++ and Rt ∈ [R, R̄] ⊂ R++. Additionally assume

that the distributions of βt and Rt satisfy the technical conditions in assump-

tions A and B, and redefine Λ = [0, w0 + ȳ]× [(R̄− 1)/R̄, 1]. Then the results

of theorem 4.1 hold.

This suggests a more interesting extension of the model. Consider the case

in which income is not identically independently distributed, but it is composed

of the product of a permanent and a transitory components. In particular,

let yt+1 = yPt+1y
T
t+1, where the transitory component yTt+1 is identically and

independently distributed with mean 1 and variance σ2
T . On the other hand,

assume that the logarithm of the permanent component follows a random

walk with drift, so that yPt+1 = yPt ǫt+1, where ǫt+1 = ǫǫPt+1, ǫ ∈ R+, and

ǫPt+1 is identically independently distributed with mean 1 and variance σ2
ǫ .

Additionally, assume that all the identically independently distributed random

variables satisfy the conditions of assumptions A and B. Also, assume that the
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utility function satisfies u(x·Ct) = u(x)u(Ct) for any x ∈ R++. Finally, assume

all the parameters satisfy the conditions required for the existence of a fully

rational solution.10

Clearly, in this setting it is not optimal for the agent to have wealth growing

at a different rate than income, since she could adjust her consumption and

obtain a higher level of utility without ever getting to a situation where she

is liquidity constrained infinitely often or never liquidity constrained. Thus,

under these conditions, any good rule requires agents’ wealth to be growing

at the same rate as her income. But this can only happen if her consumption

grows at the same rate also. So, if consumers are sufficiently sophisticated to

deduce this, they can apply the same algorithm to a similar problem and learn

the optimal linear rule. In particular:

Theorem 5.6. Assume agents comprehend that normalizing all variables,

which affect their decision problem, by the permanent component of income

eliminates underlying growth in their problem. Then they can learn the opti-

mal rule α∗ by applying algorithm (DG) to their consumption problem based

on normalized values.

Proof. In this case a consumer’s wealth evolves according to

Wt+1 =R(Wt − Ct) + yPt+1y
T
t+1, (5.5)

10While the conditions that ensure the algorithm can be analyzed using the ODE are
satisfied by my assumptions, in order to obtain optimality it is required that such a fully
rational solution exists. This is an implicit assumption throughout the paper. See e.g.
Carroll (2004) for the conditions required when the utility function has the constant relative
risk aversion property.
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where Wt and Ct are their wealth and consumption levels. But, dividing by

yPt+1 on both sides, this is equivalent to

wt+1 =Rt+1(wt − ct) + yTt+1, (5.6)

where wt = Wt/y
P
t , Rt+1 = R/ǫt+1, and ct = Ct/y

P
t , which has the same

structure as equation (2.1) in the original problem studied above, but with a

random rate of interest.

Additionally, notice that in this case βu(Ct) = βu(ǫ)u(ǫPt+1)u(ct). Defining

βt = βu(ǫ)u(ǫPt+1), this problem is identical to the original one with a random

discount rate. Thus, my previous results imply agents can learn the optimal

rule α∗ of the normalized problem using any version of the algorithm.

Notice that in this scenario, the optimal rule α∗ that is found by the al-

gorithm is also normalized. In particular, since normalized consumption is

cbt = min {wt, α
0
t + α1

twt}, then the consumption function is given by Cb
t =

min
{

Wt, α
0
t y

P
t + α1

tWt

}

. Thus, agents would internalize the fact the income

is growing by increasing the intercept of their consumption rule by the same

growth rate as income. Clearly, this requires a lot of sophistication on the part

of the agents, who must understand that consumption needs to be growing at

the same rate as income. But additionally, it requires them to understand

what the effect of normalization is on the effective interest and discount rates.

But what if agents do not realize that consumption should be growing at

the same rate as income? That is if they measure their regret based on the

actual non-normalized values of wealth and consumption. In this case, if the
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utility function satisfies u(ǫt+1/ǫt) = u(ǫt+1)/u(ǫt), then the ODE related to

the algorithm can be written as a function of consumption, wealth, and income

normalized by the permanent component of income. Namely, as









dα̃
∂τ

dα̃
∂τ









=M̃

∫

W

[(

Etβt+1Rt+1u
′(cb(w′))− u′(cb(w))

)

u′′(cb(w))
]

·







1

w






IUπα(dw),

where M̃ = M · (u(ǫ)2/ǫ3) · E(u(ǫP )2/(ǫP )3), ǫP has the same distribution as

ǫPt , and βt and Rt are as defined in the previous proof. Thus,

Corollary 5.7. Agents learn the optimal linear consumption rule α∗.

These results show that agents using the H-O algorithm can learn the opti-

mal linear consumption rule in more complex environments without requiring

more sophistication, rationality, memory or computing abilities. Clearly, these

results apply mutatis mutandis to frameworks where agents have a fixed prob-

ability of dying every period and a finite expected life.11

5.3 Asymptotics, shocks, and finite lives

Although encouraging, these results have been based on the asymptotic be-

havior of the algorithm when κt → 0 as t → ∞. This generates two kinds of

problems: first, agents will stop learning as t→ ∞, which implies they will fail

to react even if their environment undergoes large abrupt changes. Second,

11While my results are based on the normalization of variables, one could use the methods
of Benveniste et al. (1990, part I, ch.4) for tracking non-stationary parameters in order to
allow the income process to follow other more complex stochastic processes.
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asymptotic results may be too far into the future given agents’ lifespan, thus

undermining their importance.

In order to address the first problem one can assume that agents restart

the learning process whenever their environment changes if κt ≈ 0. Another

would be to let agents change their consumption behavior in ways that would

be suggested by the algorithm. As my previous result suggest agents might

react to a change in the average income by changing the intercept α0 in the

same quantity. Finally, one could assume that agents do not stop learning, i.e.

that limt→∞ κt = κ > 0.

On the other hand, in order to address the second problem, two central

questions need to be answered. First, how well does the learning algorithm

perform in T ≪ ∞ periods? And, second, how well does it perform when

agents have finite lives? Clearly, if infinitely lived agents who use the algo-

rithm perform poorly in finite time, this learning scheme will not be useful in

situations where agents have finite lives. Thus, to answer these questions one

needs to know if within T periods the algorithm is close to its stationary state.

Reassuringly, results can be established for a finite horizon T ,

when limt→∞ κt = κ ≥ 0 is small enough. In particular,

Corollary 5.8 (Benveniste et al. (1990, Corollary 2, p.43)). Let κ̄ = maxt≥0 κt,

ǫ > 0, and T be such that the trajectory of the ODE is close to the optimal

rule, i.e. ‖α(T )− α∗‖ ≤ ǫ/2, where α(T ) is the value at T of the solution of

(ODE-DG). Then P (‖αT − α∗‖ > ǫ) → 0 as κ̄→ 0.

This implies that if κ̄ is small enough and the ODE converges fast enough

to the optimal rule, so will the algorithm. This result implies that the results
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with decreasing gain can be generalized to the constant gain case, as long as

the constant gain is small enough. Additionally, it indicates that if infinitely

lived agents had to stop learning at T and were forced to live forever using

their current rule, their ex-ante expected lifetime utility would be close to the

one generated by the optimal rule.

Notice that this corollary also provides an answer to the first problem

raised. If limt→∞ κt = κ > 0, then the agent never stops learning. So, any

change in her environment, which changes α∗, will quickly affect her learning,

which will track the new optimal rule. Thus, this “constant gain” version is

extremely useful in settings where the agent may face a changing environment.

Furthermore, notice that the agent will be learning and adapting to the new

environment even if she does not know the environment changed! This is an

interesting property of this family of algorithms, which solves the problems

raised by the Lucas critique, even though agents are not fully rational.

All the optimality results presented above are based on the comparison of

expected discounted life-time utilities in stationary states. But, if agents have

a finite live, then these optimality criteria are not useful nor can the analysis be

easily adapted. The problem here is that stationarity played an essential role

in all my previous analyses. But unlike the infinite horizon case, the problem

cannot be transformed into a variant that is stationary. On the contrary, the

agent’s problem varies with her age.12

While analytical results seem to be difficult to obtain, the ability of the

12Perhaps the use of social intertemporal learning, where agents of different ages “teach”
each other or share past experience might allow the problem to be analyzed as a stationary
one.
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algorithm to track changes in the system, suggests it could still be useful in

this setting. To analyze this possibility, I endow finitely lived agents with

the HO-algorithm and compare their actual lifetime utility from using this

algorithm with the utility they would obtain if they had used the fully rational

consumption rule.

As in Allen and Carroll (2001) and Howitt and Özak (2009) I consider

agents who have constant relative risk aversion (CRRA) utilities with a CRRA

coefficient θ = 3, a discount factor β = 0.9, and face a zero constant rate of

interest. In order to understand the effect of a finite horizon, I consider 3

cases in all of which I follow agents for 60 periods. Case 1 assumes agents

have finite lives and have the same income process as the two aforementioned

papers, where each period agents get identically independently distributed

income shocks. In particular, I assume yt ∈ {0.7, 1, 1.3} with the probabilities

{0.2, 0.6, 0.2} respectively. Case 2 assumes agents have finite lives and an

inverse-U-shaped income profile, where yt = yPt · yT , where yT has the same

distribution as the previous process, and yPt = 1 − (t/60 − .5)2. In case 3

I assume agents live infinitely and their income follows the same process as

case 1, but I only follow their utility for the first 60 periods of their lives. I

assume all agents in all cases start to learn from the same initial linear rule

α0 = (0, 0.5) and initial wealth w0 = 2.5. For each case I simulate the behavior

of 100,000 agents who use the unconstrained and the zero-intelligence versions

of the algorithm. Additionally, I assume that if the new rule αt+1 /∈ Λ, then

the agent does not update the rule and simply keeps her previous one for one

31



more period.13 Finally, I assume the agent uses κt = 0.35 and the matrix

M = 10 ·







1 0.975

0.975 1






. (5.7)

Figures 2-7 summarize the results of these simulations. For each case I

present the evolution of the mean, median, 25th and 75th quantile, minimum

and maximum of the parameters of the consumption rules αt in panels (a) and

(b). As can be seen there, and as should be expected from the theory, in all

cases most of the movement in the mean value of the parameters occurs in the

first 20 periods. This suggests that the distribution of parameters converges

very fast. In cases 1 and 3, presented in figures 2, 3, 6, and 7, the average

consumption rule remains practically constant after 30 periods. On the other

hand, in case 2 (figures 4-5), the parameters follow the non-monotonicity of the

income process. In particular, notice that the average intercept α0 has a similar

inverse-U-shaped evolution, which could be expected, since that is precisely

the shape of average income. On the other hand, the marginal propensity to

consume α1 starts with a movement towards the optimal rule α∗, but then

follows a U-shaped trajectory.

Panels (c) and (d) of these figures present the distribution of realized life-

time discounted utilities under the linear and fully rational consumption rules,

and the distribution of differences in these realized utilities. The figures show

clearly that agents’ discounted lifetime utilities would have been higher under

13Similar results are obtained if instead the agent chooses a random rule in Λ, a fixed
rule in Λ or the closest rule that would have resulted in her not having regret.
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the fully rational rule. In all cases the distribution of utilities under bounded

rationality has a very long left tail, showing that there are many individuals

that get very low lifetime utilities. This is caused mostly by underconsumption

during their lifetime. Since all agents start from the same initial conditions,

this suggests that a series of bad draws prevents some agents from learning.

In particular, notice that if agents live finite lives (case 1 and 2) the median

deviation of lifetime utility is less than one unit. On the other hand, if agents

are infinitely lived, the median difference lies between 2 and 1.5.

Since differences in utilities cannot be easily compared, I also compute the

certainty equivalent level of consumption, which would have generated that

level of utility in the same T = 60 periods. In particular, for every agent I

compute

CE =
1− β

1− βT+1
u−1

(

T
∑

t=0

βtu(ct)

)

. (5.8)

Panels (e) and (f) show the distribution of these certainty equivalents and

the difference between the certainty equivalents generated by the boundedly

and fully rational rules. In all cases the median boundedly rational CE is

above the minimum fully rational CE. Thus, in this setting boundedly rational

agents, who use the HO-algorithm, have at least a 50% probability of having

similar levels of CE than fully rational ones within 60 periods. Similarly, the

probability that boundedly rational agents’ discounted lifetime utility levels are

in the range obtained by fully rational ones is close to 50% within 60 periods.

Notice that these results do not depend on the agent having a finite life. This
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follows basically from the fact that unless their lifespan T is extremely short,

the rational consumption rule for every age is pretty close to the rational

consumption rule of the infinitely lived agent.

Although these results are only suggestive, they do support the use of the

algorithm in life cycle models with boundedly rational agents.

6 Conclusions

The assumption of complete and perfect rationality has increasingly been criti-

cized due, in part, to the high complexity of many solutions in economic models

under this assumption. In response, models of bounded rationality and learn-

ing have recently flourished in economics, though the study and application

of these ideas to approximate solutions of stochastic dynamic programming

problems is still an emerging area. In particular, the study of consumption-

saving decisions under uncertainty and liquidity constraints has been pursued

by only a couple of papers with limited or negative results.

In this paper I have shown that boundedly rational agents, who use a linear

consumption function, face liquidity constraints, and have uncertain income,

can learn to behave “optimally” by following a generalization of the learning

scheme proposed by Howitt and Özak (2009). In particular, using a novel

theoretical framework I have shown that in a general consumption problem

under liquidity constraints and uncertainty, agents using this algorithm will

learn to behave optimally. In particular, there is a unique stable consumption

rule that maximizes agents’ ex-ante expected life-time utility. The stability
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and optimality properties of this rule imply that in the steady state agents do

not have an incentive to deviate from their behavior. This follows from the

fact they are getting the maximum expected life-time utility under the wealth

distribution generated by their consumption function.

Using the general theory I provided various extensions of the model to

incorporate different income processes, random interest and discount rates,

and levels of rationality and sophistication by agents. Additionally, I studied

the effects of social social learning. Finally, using numerical simulations I find

that the algorithm has similar properties to the infinite horizon case when

agents live only a finite number of periods and have a life-cycle pattern of

income.

The analytical and numerical techniques used suggest that similar results

could be obtained in other dynamic programming settings. This would allow

the study of bounded rationality in other macroeconomic models. Clearly,

learning the fully rational solution might only be attainable in very specific

settings, like the linear-quadratic one (Evans and McGough, 2009) or when

the boundedly rational rule belongs to the same family of functions as the

optimal one. Still, unlike other learning schemes, the one proposed in this

paper is known to have stability and optimality properties which make its use

more desirable. In particular, this framework can be applied in large agent

based macroeconomic models, where millions of agents need to be simulated

simultaneously. By using this learning scheme, macroeconomic modelers can

incorporate boundedly rational agents in their models, without being subject

to extremely suboptimal behavior by the modeled agents nor to the Lucas
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critique.
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Krasovskĭı, N. N. (1963). Stability of motion: applications of Lyapunov’s

second method to differential systems and equations with delay. Stanford,

Calif.: Stanford University Press. 59

Kushner, H. J. and Yin, G. (2003). Stochastic approximation and recursive

algorithms and applications, vol. 35. New York: Springer. 13

Lettau, M. and Uhlig, H. (1999). Rules of thumb versus dynamic program-

ming. American Economic Review, 89 (1), 148–174. 1, 5, 13

Loomes, G. and Sugden, R. (1982). Regret theory: An alternative theory

of rational choice under uncertainty. The Economic Journal, 92 (368), 805–

824. 4, 12

Meyn, S. P. and Tweedie, R. L. (1993). Markov chains and stochastic

stability. Springer. 46, 47, 48, 49, 53

Puterman, M. and Brumelle, S. (1979). On the convergence of policy

iteration in stationary dynamic programming. Mathematics of Operations

Research, pp. 60–69. 2

Rudin, W. (1966). Real and complex analysis. McGraw-Hill series in higher

mathematics, New York: McGraw-Hill. 49

38



Santos, M. and Rust, J. (2004). Convergence properties of policy iteration.

SIAM Journal on Control and Optimization, 42 (6), 2094–2115. 2

Sargent, T. J. (1993). Bounded rationality in macroeconomics: Thomas J.

Sargent. Oxford: Clarendon Press. 1

Selten, R. (1998). Aspiration adaptation theory. Journal of Mathematical

Psychology, 42 (2), 191–214. 4

— (2001). What is bounded rationality. In G. Giderenzer and R. Selten (eds.),

Bounded rationality: The adaptive toolbox, MIT Press, pp. 13–36. 4

— (2004). Learning direction theory and impulse balance equilibrium. In

D. Friedman and A. Cassar (eds.), economics Lab: An Intensive Course

in Experimental Economics, N.Y., USA: Routledge, pp. 133–140. 12

— and Buchta, J. (1999). Experimental sealed bid first price auctions with

directly observed bid functions. In R. Z. David V. Budescu, Ido Erev (ed.),

Games and human behavior: Essays in honor of Amnon Rapoport, 5, Mah-

wah NJ: Psychology Press, pp. 79–102. 4

— and Stoecker, R. (1986). End behavior in sequences of finite prisoner’s

dilemma supergames a learning theory approach. Journal of Economic Be-

havior & Organization, 7 (1), 47–70. 4, 5

39



Figure 2: Dynamics of (backward-looking) algorithm with finite horizon (case
1).

0 10 20 30 40 50 60
Period

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

α
0 t

(a) Intercept α0
t

0 10 20 30 40 50 60
Period

0.0

0.2

0.4

0.6

0.8

1.0

α
1 t

(b) Marginal propensity to consume α1
t

−4 −3 −2 −1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
n
si
ty

1
N

T∑
t=0

βt U(c bt (wt))

1
N

T∑
t=0

βt U(c ∗ (wt))

T∑
t=0

βt U(c bt (wt))

T∑
t=0

βt U(c ∗ (wt))

(c) Distribution actual lifetime utilities un-
der bounded and fully rational consumption

rules.

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
T∑

t=0
βt [U(c bt (wt))−U(c ∗ (wt))]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
e
n
si

ty

Mean Utility Difference

Median Utility Difference

Utility Difference

(d) Distribution differences between actual
lifetime utilities (bounded vs fully rational).

0.8 0.9 1.0 1.1 1.2
0

2

4

6

8

10

12

14

D
e
n
si
ty

Mean CE Bounded

Median CE Bounded

Mean CE Optimal

CE Bounded

CE Optimal

(e) Distribution CE consumption (bounded
vs fully rational).

−0.25 −0.20 −0.15 −0.10 −0.05 0.00
CEb −CE ∗

0

2

4

6

8

10

12

D
e
n
si

ty

Mean CE Difference

Median CE Difference

CE Difference

(f) Distribution differences CE consumption
(bounded vs fully rational).

40



Figure 3: Dynamics of (zero-intelligence) algorithm with finite horizon (case
1).
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Figure 4: Dynamics of (backward-looking) algorithm with finite horizon (case
2).
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Figure 5: Dynamics of (zero-intelligence) algorithm with finite horizon (case
2).
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Figure 6: Dynamics of (backward-looking) algorithm with infinite horizon
(case 3).
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Figure 7: Dynamics of (zero-intelligence) algorithm with infinite horizon (case
3).
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Online Appendix (not for publication)

A Proofs

Proof of Theorem 2.1. Clearly, under assumption A, the wealth process {wt} is Markov with

state space (W,B(W)) = (R+,B(R+)) and transition probability kernel P defined by

P (w,A) = Γ
(

{

A− R
(

w − c(w)
)}

∩ Y
)

, ∀w ∈ W, A ∈ B(W). (A.1)

P (w,A) gives the probability of going from state w to a set A in one period. Notice that if

w ∈ [0, w̃], then P (w,A) = Γ(A ∩ Y) is independent of w, i.e. [0, w̃] is an atom (Meyn and

Tweedie, 1993, p.103). If y ≤ w̃, then this set is an accessible atom.

Here I present and prove a more general version of the theorem. For that, let Y = [y, ȳ)

and let {wt} be a Markov process with state space (W,B(W)) = (R+,B(R+)), defined as

wt+1 = h(wt) + yt+1

for some increasing and convex (or concave) function h(w) and transition probability kernel

P defined by

P (w,A) = Γ
(

{

A− h(w)
)}

∩ Y
)

, ∀w ∈ W, A ∈ B(W). (A.2)

P (w,A) gives the probability of going from state w to a set A in one period.

Let A denote the set of stationary wealth levels generated by the stochastic difference

equation, when income is equal to y in every period, and let Ā denote the set of stationary

wealth levels when income is ȳ in every period, i.e. A =
{

w ∈ R+ | w = h(w) + y
}

and

Ā = {w ∈ R+ | w = h(w) + ȳ}. Let w be the infimum of A, w̄ be the infimum of Ā, and ¯̄w

be the supremum of Ā.

Theorem A.1. If assumption A holds, then:

(i) If ¯̄w <∞, then there exists a unique invariant probability measure π on W and a π-null
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set N such that for any initial distribution of initial wealth λ,14 such that λ(N) = 0,

∥

∥

∥

∥

∫

λ(dw)Pm(w, ·)− π(·)

∥

∥

∥

∥

→ 0, m→ ∞.

(ii) If ¯̄w = ∞, then P (wt → ∞) = 1.

Proof. We present the proof for the case when h(w) is convex. For the other case, just revert

the roles of w1 and ¯̄w.

(i) Assume that ¯̄w <∞. We need to analyze two cases:

(a) If w < w1, let A∗ = [w, w̄], A0 = [0, w), A1 = (w̄, w1) and A∞ = [w1,∞). Then

P (w,A∗)

{

= 1 if w ∈ A∗ ∪ A0

= 0 if w ∈ A∞
, P (w,A∞)

{

= 1 if w ∈ A∞

= 0 if w ∈ A0 ∪ A∗
(A.3a)

Pm(w,A∗) > 0 if w ∈ A1 or Pm′

(w,A∞) > 0 if w ∈ A1 (A.3b)

for some 1 ≤ m,m′ < ∞. So, for any w ∈ W and A such that A∗ ⊆ A and

A ∩A∞ = [ŵ,∞) for some ŵ > w1, there exists m < ∞ such that Pm(w,A) > 0.

Letting

ϕ(A) =

{

Γ (A ∩ Y) if A∗ ⊆ A and A∩A∞ = [ŵ,∞) for some ŵ ≥ w1

0 Otherwise

I have that the process {wt} is ϕ-irreducible and thus there exists a maximal

irreducibility measure ψ on B(W) (Meyn and Tweedie, 1993, theorem 4.0.1). Fur-

thermore, ψ(A∗ ∪ A∞) > 0, so that ψ has support with non-empty interior, and

since the process is Feller, it is a T-chain by proposition 7.1.2 and theorem 6.0.1(iii)

in Meyn and Tweedie (1993). Furthermore, theorem 6.0.1.(ii) ensures that every

compact set is petite, and since A∗ is compact and absorbent, theorem 8.3.6(i) en-

sures the process {wt} is recurrent. Thus, by theorem 10.4.4 I have the existence of

14Here ‖·‖ denotes the total variation norm, i.e. if λ is a signed measure on B(W) then

‖λ‖ := sup
f :|f |≤1

|λ(f)| .
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a unique invariant measure π̄, which, since A∗ is petite and absorbing, by theorem

10.4.10 is finite, and equivalent to a probability measure π, so that the process is

positive recurrent. Now, it is not hard to prove that the process is aperiodic, so

that theorem 13.3.4(ii) in Meyn and Tweedie (1993) gives the desired result.

(b) If w = w1, then also w̄ = ¯̄w. Let A∗ = [w1, ¯̄w], A0 = [0, w1) and A∞ = [ ¯̄w,∞).

Then

P (w,A∗) = 1 if w ∈ A∗ ∪A0 and Pm(w,A∗) > 0 if w ∈ A∞

(A.4)

for some 1 ≤ m < ∞. So, for any w ∈ W and A such that A∗ ⊆ A, there exists

m <∞ such that Pm(w,A) > 0. Letting

ϕ(A) =

{

Γ (A ∩ Y) if A∗ ⊆ A

0 Otherwise

I have that the process {wt} is ϕ-irreducible and thus there exists a maximal

irreducibility measure ψ on B(W) (Meyn and Tweedie, 1993, theorem 4.0.1). Fur-

thermore, since ψ(A∗) > 0, the result follows from the same arguments as in (a).

(ii) If ¯̄w = ∞, for any w ∈ W there exists m < ∞ such that ǫw = Pm(w,A∞) > 0, where

A∞ = [w1,∞). Define ǫ = supw∈[0,w1) ǫw. Clearly, P (w,A∞) = 1 if w ∈ A∞ and

P (wt → ∞ | w0 ∈ A∞) = 1, then for any w ∈ [0, w1),

P (wt <∞, ∀ t) = 1−P (wt → ∞) = P (wt ∈ (A∞)C , ∀ t) = lim
t→∞

(1−ǫwt
)t ≤ lim

t→∞
(1−ǫ)t = 0

so that P (wt → ∞) = 1.

It is easy to see that if h(w) is concave, then the set N in the previous theorem is given

by N = ∅. This theorem can easily be extended for other types of increasing functions, but

this would require us to change the notation and analyze more subcases, so I do not pursue

it here.

Proof of Theorem 4.1. Let’s start by proving that πα is Dφ-continuous and differentiable
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(Heidergott, Hordijk and Weisshaupt, 2006; Heidergott and Vázquez-Abad, 2006, 2008). In

order to prove this, I need to show that under our assumptions, the proof of Theorem 4.2 of

Heidergott et al. (2006) holds, so that πα0,α1
is Dφ-Lipschitz continuous and differentiable.

For simplicity I will follow the notation and definitions used by Heidergott et al. (2006). We

present the proof in steps.

Step 1: Let A∗ be as in (i)(a) in the proof of Theorem 2.1. This set is petite and the first

return time to A∗ for every w ∈ A∗, τA∗ is 1. So, theorem 14.0.1 of Meyn and

Tweedie (1993) implies that for any function f : W → [1,∞) I have that

∫

W

f(w)πα0,α1
(dw) <∞.

Clearly, for any continuous function g : W → R, |g| + 1 satisfies the conditions

above, so that |g| + 1 is πα0,α1
-integrable. By theorem 11.27 of Rudin (1966) g is

also πα0,α1
-integrable.

Step 2: For fixed α, let P (w,A;α) denote the one-step transition kernel. By (2.1) w′ ∈

W(α,w) ≡ [R(w − cb(α,w)) + y, R(w − cb(α,w)) + ȳ) with probability one, so that

the density function of w′ is

γw′(w′;α,w) =

{

γy(w
′ − R(w − cb(α,w))) if w′ ∈ W(α,w)

0 Otherwise

and

P (w,A;α) =

∫

A

γw′(w′;α,w)dw′.

Under (a), this implies that for any continuous function g : W → R,

∫

W

|g(w′)| γw′(w′;α,w)dw′ =

∫

W(α,w)

|g(w′)| γw′(w′;α,w)dw′

≤(ȳ − y) · sup
w′∈W(α,w)

|g(w′)| γw′(w′;α,w) <∞

for all α and w ∈ W. Let D denote the set of continuous functions g : W → R and

Dφ be the set φ-bounded continuous functions, where φ is defined in equation (2.2).
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Clearly, Dφ ⊆ D .

Under (b), I have that for any φ-bounded continuous function g : W → R,

∫

W

|g(w′)| γw′(w′;α,w)dw′ ≤K

∫

W(α,w)

φ(w′)γw′(w′;α,w)dw′ <∞.

For this case, let D = Dφ be the set of φ-bounded continuous functions.

Then by assumption D, P (w,A;α) is D-Lipschitz continuous at α. To see this, notice

that for α′ 6= α with α′ chosen in such a way that either both cb(α,w), cb(α′, w) < w

or cb(α,w), cb(α′, w) ≥ w. We can do this, since both D-Lipschitz continuity and

D-differentiability need to hold on an open set around α. Then

∣

∣

∣

∣

∫

W

g(w′)γw′(w′;α,w)dw′ −

∫

W

g(w′)γw′(w′;α′, w)dw′

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

W

g(w′)
(

γw′(w′;α,w)− γw′(w′;α′, w)
)

dw′

∣

∣

∣

∣

≤

∫

W

|g(w′)| |γw′(w′;α,w)− γw′(w′;α′, w)| dw′.

On W(α,w) ∩W(α′, w) I have that

|γw′(w′;α,w)− γw′(w′;α′, w)| ≤M1(w)
∣

∣R(w − cb(α,w))−R(w − cb(α′, w))
∣

∣

=RM1(w)
∣

∣cb(α,w)− cb(α′, w)
∣

∣

≤RM1(w)
(

|α0 − α′
0|+ w |α1 − α′

1|
)

.

On the other hand, let

ŵ = max
{

R(w − cb(α,w)) + ȳ, R(w − cb(α′, w)) + ȳ
}

,

ŵ = min
{

R(w − cb(α,w)) + ȳ, R(w − cb(α′, w)) + ȳ
}

,

w̃ = max
{

R(w − cb(α,w)) + y, R(w − cb(α′, w)) + y
}

w̃ = min
{

R(w − cb(α,w)) + y, R(w − cb(α′, w)) + y
}
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so that

∫

W\

(

W(α,w)∩W(α′,w)

) |g(w′)| |γw′(w′;α,w)− γw′(w′;α′, w)| dw′

=

∫ w̃

w̃

|g(w′)|max {γw′(w′;α,w), γw′(w′;α′, w)} dw′

+

∫ ŵ

ŵ

|g(w′)|max {γw′(w′;α,w), γw′(w′;α′, w)} dw′

≤
(

M2(w) +M3(w)
)(

|α0 − α′
0|+ w |α1 − α′

1|
)

.

So,

∫

W

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′ =

=

∫

W(α,w)∩W(α′,w)

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

+

∫

W\

(

W(α,w)∩W(α′,w)

) |g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

≤
(

Kg RM1(w) +M2(w) +M3(w)
)(

|α0 − α′
0|+ w |α1 − α′

1|
)

where Kg =
∫

W(α,w)∩W(α′,w)
|g(w′)| dw′.

Similarly, if α, α′ and w are such that either α0+α1w ≤ w ≤ α′
0+α

′
1w or α′

0+α
′
1w ≤

w ≤ α0 + α1w, then

∫

W

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′ =

=

∫

W(α,w)∩W(α′,w)

|g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

+

∫

W\

(

W(α,w)∩W(α′,w)

) |g(w′)| |γw′(w′;α,w)dw′ − γw′(w′;α′, w)| dw′

≤
(

Kg RM1(w) +M2(w) +M3(w)
)(

|α0 − α′
0|+ w |α1 − α′

1|
)

.

This follows from a proof similar as before, one just need to notice that if α0+α1w ≤

w ≤ α′
0 + α′

1w, then

0 ≤ w(1− α1)− α0 ≤ (α0 − α′
0) + w(α1 − α′

1),
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so that

∣

∣cb(α,w)− cb(α′, w)
∣

∣ = |w(1− α1)− α0|

≤ |(α0 − α′
0) + w(α1 − α′

1)|

≤ |α0 − α′
0|+ w |α1 − α′

1| ,

and similarly for the case when α′
0 + α′

1w ≤ w ≤ α0 + α1w.

Step 3: Since w̄α <∞, so

sup
α

‖Pα‖φ = sup
α

sup
w

∫

W

γw′(w′;α,w)
φ(w′)

φ(w)
dw′ <∞. (A.5)

Step 4: Since φ(·) is continuous and the level sets Cφ = {w | φ(w) ≤ d} for some d ∈ R+ are

compact, they are also petite. This implies that φ(·) is unbounded off petite sets.

Notice that −Rα0 − (1− R(1− α1))w ∈ Dφ and I can find a λ ∈ (0, 1) such that

sup
w

−Rα0 − (1− R(1− α1))w

φ(w)
< (λ− 1) < 0.

If w ≤ w̃, then
∫

Y

φ(y)γy(y)dy ≤ L1 ≤ L1 + λφ(w).

On the other hand, if w > w̃, then

∫

Y

φ
(

R(1− α1)w −Rα0 + y
)

γy(y)dy − φ(w) =

∫

Y

φ′(ξ)
(

R(1− α1)w −Rα0 + y − w
)

γy(y)dy <

∫

Y

yγy(y)dy −Rα0 − (1−R(1− α1))w

so that

∫

Y

φ
(

R(1− α1)w −Rα0 + y
)

γy(y)dy ≤

L2 + λφ(w).

52



Let L = max {L1, L2}, then L, λ, φ(w) satisfy lemma 15.2.8 in Meyn and Tweedie

(1993), and by their theorem 16.0.1

‖P n
α − πα‖φ ≤ Kαρ

n
α (A.6)

for some Kα <∞ and 0 < ρα < 1.

But equations (A.5) and (A.6) are the same as in lemma 4.1 and equation (20) in theorem

4.1 in Heidergott and Vázquez-Abad (2008), so the proof of their theorem 4.2 holds, and πα

is Dφ-Lipschitz continuous.

Additionally, notice that if g ∈ Dφ, then

d

dα0

∫

W

g(w′)γw′(w′;α,w)dw′ =























R
(

g(R((1− α1)w − α0) + y)γy(R((1− α1)w − α0) + y)−

g(R((1− α1)w − α0) + ȳ)γy(R((1− α1)w − α0) + ȳ)
)

+
∫

W
g(w′) d

dα0
γw′(w′;α,w)dw′ if w ≥ α0

1−α1

0 Otherwise

d

dα1

∫

W

g(w′)γw′(w′;α,w)dw′ =























Rw
(

g(R((1− α1)w − α0) + y)γy(R((1− α1)w − α0) + y)−

g(R((1− α1)w − α0) + ȳ)γy(R((1− α1)w − α0) + ȳ)
)

+
∫

W
g(w′) d

dα1
γw′(w′;α,w)dw′ if w ≥ α0

1−α1

0 Otherwise

are well defined and are the Dφ-derivatives of P (w,A;α). Thus, πα is also Dφ-differentiable.

Since Weierstrass’ Theorem ensures the existence of a σ-optimal rule, and strict concavity

of the utility function ensures that for each σ ∈ Λ, ασ is unique, i.e. a function and not a

correspondence of σ. Now, the maximization problem is also continuous with respect to σ,

ensuring that ασ is continuous in σ. This allows the application of Brouwer’s fixed point

theorem to prove existence of the solution α∗ that is α∗-optimal.

For the next step, we need a couple of additional results and characterizations of the

α∗-optimal rule and of the fully rational solution. It is well known that in my setting the

fully rational solution c∗(w), can be analyzed as the solution to

v(w) = max
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

(A.7a)
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i.e. c∗(w) = argmax
s.t. 0≤c≤w

u(c) + βE
[

v(h(c, w, y)) | c, w
]

(A.7b)

Notice that for α∗ and any α,

EVα∗ − EV ∗ ≡

∫

U(α∗, w)− v(w) πα∗(dw) ≥

∫

U(α,w)− v(w) πα∗(dw)

Proposition A.2. If limt→∞ βtE0

[

U(α,wt)− v(wt)
]

= 0 for α ∈ Λ then:

(i)

U(α,wt)− v(wt) =

E0

[

∞
∑

j=0

µ(wt+j)(c
b(wt+j)− c∗(wt+j))− kt+j(c

b(wt+j)− c∗(wt+j))
2

]

.
(A.8)

(ii)

EVα−EV
∗ =

∞
∑

j=0

βj

∫

W

[

µ(wt+j)(c
b(wt+j)− c∗(wt+j))

−kt+j(c
b(wt+j)− c∗(wt+j))

2πα(dwt+j)
]

.

(A.9)

Proof of proposition A.2. (i) By Taylor’s theorem

u(cb(wt))+βE0v(R(wt − cb(wt)) + yt) = u(c∗(wt)) + u′(c∗(wt))(c
b(wt)− c∗(wt))

+
1

2
u′′(ξt)(c

b(wt)− c∗(wt))
2 + βE0[v(R(wt − c∗(wt)) + yt)]

−βRE0[v
′(R(wt − c∗(wt)) + yt)](c

b(wt)− c∗(wt))

+
1

2
βRE0[v

′′(ζt)](c
b(wt)− c∗(wt))

2

= v(wt)+
(

u′(c∗(wt))− βRE0[v
′(R(wt − c∗(wt)) + yt)]

)

(cb(wt)− c∗(wt))

+
1

2

(

u′′(ξt) + βRE0[v
′′(ζt)]

)

(cb(wt)− c∗(wt))
2

= v(wt)+µ(wt)(c
b(wt)− c∗(wt)) +

1

2

(

u′′(ξt) + βRE0[v
′′(ζt)]

)

(cb(wt)− c∗(wt))
2

where µ(wt) ≥ 0 is the Lagrange multiplier associated to the first order condition of
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(A.7a), ξt ∈ (c∗(wt), c
b(wt)) and ζt ∈ (R(wt − c∗(wt)) + yt, R(wt − cb(wt)) + yt). Thus,

U(α,wt)− v(wt) =u(c
b(wt)) + βE0[U(α,R(wt − cb(wt)) + yt)]− v(wt)

=µ(wt)(c
b(wt)− c∗(wt)) +

1

2

(

u′′(ξt) + βRE0[v
′′(ζt)]

)

(cb(wt)− c∗(wt))
2

+ βE0[U(α,R(wt − cb(wt)) + yt)− v(R(wt − cb(wt)) + yt)].

Iterating I get

U(α,wt)− v(wt) = E0

[

T
∑

j=0

(

µ(wt+j)(c
b(wt+j)− c∗(wt+j))

)

]

+ E0

[

T
∑

j=0

1

2

((

u′′(ξt+j) + βRE0[v
′′(ζt+j)]

)

(cb(wt+j)− c∗(wt+j))
2
)

]

+ βTE0[U(α,R(wt+T − cb(wt+T )) + yt+T )− v(R(wt+T − cb(wt+T )) + yt+T )]

which under our hypothesis gets the desired result.

(ii) Notice that U(α,wt) − v(wt) is continuous in wt and under the stationary distribu-

tion wt ∈ [y, w̄]. So, U(α,wt) − v(wt) ≤ V̄ , for some 0 < V̄ < ∞, and thus,

limt→∞ βtE0

[

U(α,wt) − v(wt)
]

= 0 holds for wt ∈ W πα∗-a.e. Replacing the previous

equation in the definition of EVα −EV ∗ gives the result.

Corollary A.3. α∗, belongs to the set

Λ̃ = {α ∈ Λ | w̃α∗ = w̃∗} ,

Thus, it is a solution to

min
α∈Λ

∞
∑

j=0

βj

∫

W

[

kt+j(c
b(wt+j)− c∗(wt+j))

2πα∗(dwt+j)
]

, (A.10)

which is equivalent to

min
α∈Λ

∫

W

[

ks(c
b(ws)− c∗(ws))

2πα∗(dws)
]

(A.11)

Proof of Corollary A.3. Assume on the contrary that w̃α∗ < w̃∗, then, since µ(wt+j) = 0 for
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all wt+j ≥ w̃∗, I can find α ∈ Λ such that w̄α = w̄α∗ and w̃α = w̃∗ for which

(cb(α,wt+j)− c∗(wt+j))
2 < (cb(α∗, wt+j)− c∗(wt+j))

2 ∀wt+j

µ(wt+j)(c
b(α,wt+j)− c∗(wt+j)) = 0 ∀wt+j

so that
∫

U(α,w)πα∗ −EV ∗ > EVα∗ − EV ∗

which is a contradiction. If on the other hand, w̃α∗ > w̃, then I can find α ∈ Λ such that

w̃α = w̃∗ and both consumption rules cross c∗(w) at the same point. In this case the same

contradiction follows.

That w̃α = w̃∗ implies that the first part of the integrand in (A.9) is always zero, so that

α∗ solves the problem

min
α∈Λ

∞
∑

j=0

βj

∫

W

[

kt+j(c
b(wt+j)− c∗(wt+j))

2πα∗(dwt+j)
]

. (A.12)

But a change of variable and the fact that wt follows the stationary distribution implies that

it also solves (A.11).

This implies that wα∗ = y.

Proposition A.4. There exists a unique α∗ that is α∗-optimal.

Proof of proposition A.4. Let 0 < ǫ < min {ȳ/R, (1 +R)/2R},

T1(σ) = e
∫
U(σ,w)πσ−

∫
U(ασ ,w)πσ ,

and define T : Λ → Λ as

T (σ) =

(

max

{

T1(σ)σ0,
1

2
σ0 + ǫ

}

,max

{

T1(σ)σ1,
1

2

(

σ1 −
R− 1

R

)

+ ǫ

})

.

Notice that T1 is continuous, T1(σ) ≤ 1 for all σ ∈ Λ and T1(σ) = 1 if and only if σ = ασ.

This implies that T (σ) = σ if and only if σ = ασ. So, T (σ) and ασ have the same set of
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fixed points. Since T (Λ) ⊂ Λ and is contracting, Banach’s fixed point theorem ensures there

exists a unique fixed point. Thus, α∗ is unique.

So, under our assumptions, the unique α∗-optimal rule minimizes the expected squared

difference from the optimal consumption function under the stationary distribution of wealth

πα∗ . This allows some additional and useful characterizations. In particular,

Proposition A.5. α∗, solves the following problem

min
(α0,α1)∈Λ

∫

W

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)2

πα∗(dwt). (A.13)

Proof of proposition A.5. From the previous corollary, α∗ is such that cb(w) = c∗(w) for

w ≤ w̃∗ and the expected squared difference between cb(w) and c∗(w) is minimal under πα∗ .

Since,

βREtu
′(cb(wt+1))− u′(cb(wt)) =

Taylor

k̃t(c
b(wt)− c∗(wt)), (A.14)

then (α∗
0, α

∗
1) must also solve (A.13). Since cb(α,w) is an increasing function of α, the

objective function is strictly convex, and the solution is interior, then the first derivatives

of (A.11) with respect to α0 and α1 must equal zero at α∗. Now, consider the problem of

minimizing A.14, but choosing two different set of parameters, one for cb(wt+1) and one for

cb(wt). The first order condition requires

∫

W

u′′(cb(wt))
(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

(

1
wt

)

IUπα∗(dwt) =0 (A.15)

∫

W

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

Et

[

u′′(cb(wt+1))

(

1
wt+1

)]

IUπα∗(dwt) =0 (A.16)

Notice that

∫

W

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

Et

[

u′′(cb(wt+1))

(

1
wt+1

)]

IUπα∗(dwt) =

∫

W

Etu
′′(cb(wt))

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

(

1
wt

)

IUπα∗(dwt)

+

∫

W

k̂tEt(wt+1 − wt)
(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

(

1
wt

)

IUπα∗(dwt) =
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∫

W

Etu
′′(cb(wt))

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

(

1
wt

)

IUπα∗(dwt)

+

∫

W

k̂tk̃tEt(wt+1 − wt)
(

cb(wt))− c∗(wt)
)

(

1
wt

)

IUπα∗(dwt) =

∫

W

Etu
′′(cb(wt))

(

βREtu
′(cb(wt+1))− u′(cb(wt))

)

(

1
wt

)

IUπα∗(dwt).

Thus, if (A.15) holds, so does (A.16). But (A.15) is (ODE-DG) pre-multiplied by M . That

is, α∗ is α∗-optimal if, and only if, it is an equilibrium of the differential equation related to

the algorithm.

Corollary A.6. The unique α∗-optimal rule is the unique globally asymptotically stable

equilibrium of (ODE-DG).

Proof of corollary A.6. This follows from the fact that α∗ is the unique minimizer of the

expected α∗-expected squared regret. Rewrite (ODE-DG) as

(

dα0

∂τ

dα1

∂τ

)

=M · h(α). (ODE-DG’)

Pre -multiplying (ODE-DG) by M−1 generates a gradient system. Since α∗ is the unique

minimizer it is also the unique asymptotically stable equilibrium of this dynamic system.

But, (ODE-DG) equals zero if and only if M · h(α) = 0. Since M positive definite, this can

only happen if and only if h(α) = 0. Thus, (ODE-DG) and the gradient system have the

same asymptotically stable equilibrium α∗.

Now we need to prove the relation between equation (ODE-DG) and the algorithm. For

this it is only necessary to verify that the problem satisfies the conditions required by the

theorems of the theory of stochastic recursive algorithms. Before doing so, notice that the

algorithm can be rewritten as

(

α0
t+1

α1
t+1

)

=

(

α0
t

α1
t

)

+ κtM

[∫

(

βREtu
′(cbt(wt+1))− u′(cbt(wt))

)

u′′(cbt(wt))

(

1
wt

)

IUπαt

]

+ κtM

[

(

βREtu
′(cbt(wt+1))− u′(cbt(wt))

)

u′′(cbt(wt))

(

1
wt

)

IU
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−

∫

(

βREtu
′(cbt(wt+1))− u′(cbt(wt))

)

u′′(cbt(wt))

(

1
wt

)

IUπαt

]

Notice that last two terms are a Martingale difference, so that their expected value under

the invariant distribution generated by α∗ is zero.

Let Qe ⊆ Λ be the domain of attraction of α∗. Then the global asymptotic stability of

α∗ implies:

Corollary A.7 (Krasovskĭı (1963)). There exists a function L on Qe of class C 2 such that

(i) L(α∗) = 0, L(α) > 0 for all α ∈ Qe, α 6= α∗.

(ii) ∇L(α) ·M · h(α) < 0 for all α ∈ Qe, α 6= α∗.

(iii) L(α) → ∞ if α→ ∂Qe or ‖α‖ → ∞.

For any b ∈ R+, letK(b) = {(α,M) ∈ Qe | L(α,M) ≤ b}, and τ(b) = inf {n ∈ N | (αn,Mn) /∈ K(b)}.

Also let Q1 ⊂ Q and Q2 ⊆ Qe be compact sets and

Ω(Q1,Q2) = {(αn,Mn) ∈ Q1 for all n, (αn,Mn) ∈ Q2 for infinitely many n} .

Theorem A.8. Let b < b1 < b2 <∞. Then:

(i) There exist constants B3 and s such that for all α0 ∈ K(b1) and all w ∈ W,

Pw,α0
({τ(b2) <∞}) ≤ B3(1 + |w|s)

∞
∑

k=1

κ2k. (A.17)

(ii) For all α0 ∈ K(b) and all w ∈ W, αn → α∗ Pw,α0
-a.s. on {τ(b2) = ∞}.

(iii) There exist constants B4 and s such that for all n ≥ 0, all α0 ∈ Q2 and all w ∈ W

Pn,w,α0
({αn → α∗}) ≥ 1− B4(1 + |w|s)

∞
∑

k=n+1

κ2k. (A.18)

(iv) For all w ∈ W, α0 ∈ Q2, αn → α∗ Pw,α0
-a.s. on Ω(Q1,Q2).

Pw,α0
denotes the distribution of {(wk, αk)}k≥0 starting from (w, α0) and Pn,w,α0

denotes the

distribution of {(wn+k, αn+k)}k≥0 starting from (w, α0).
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Proof of Theorem A.8. This theorem is simply an application of (i) proposition 10, (ii)

proposition 11, (iii) theorem 13 and (iv) theorem 15 in chapter 1 of part II of Benveniste

et al. (1990). I only need to show that their assumptions A.1-A.7 hold for this problem.

A.1 This is given by assumption C.

A.2 Follows directly from the definition of Q and (2.1).

A.3 In their notation, the function H(α,w) is given by the elements after κt in our equation

(DG), while their function ρ is equal to the zero function in our case. There are four

cases to consider:

(a) If w < α0 + α1w and w′ < α0 + α1w
′, then c(w′) = y.

(b) If w < α0 + α1w and w′ ≥ α0 + α1w
′, then c(w′) = α0 + α1y.

(c) If w ≥ α0 + α1w and w′ < α0 + α1w
′, then c(w′) = R(1− α1)w −Rα0 + y.

(d) If w ≥ α0+α1w and w′ ≥ α0+α1w
′, then c(w′) = α0+Rα1(1−α1)w−Rα0α1+α1y.

Let U1(w, α) =
(

βREtu
′(c(w′))− u′(α0 + α1w)

)

u′′(α0 + α1w), then

(a)

|U1(w, α)| =
∣

∣

(

βREtu
′(y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

(b)

|U1(w, α)| =
∣

∣

(

βREtu
′(α0 + α1y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(α0 + α1y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(α0 + α1y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣
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=Ū1(α)

(c)

|U1(w, α)| =
∣

∣

(

βREtu
′(R(1− α1)w − Rα0 + y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(R(1− α1)w − Rα0 + y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(R(1− α1)y − Rα0 + y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

(d)

|U1(w, α)| =
∣

∣

(

βREtu
′(α0 +Rα1(1− α1)w −Rα0α1 + α1y)− u′(α0 + α1w)

)

u′′(α0 + α1w)
∣

∣

≤
(

|βREtu
′(α0 +Rα1(1− α1)w −Rα0α1 + α1y)|+ |u′(α0 + α1w)|

)

|u′′(α0 + α1w)|

<
(∣

∣βRu′(α0 +Rα1(1− α1)y − Rα0α1 + α1y)
∣

∣+
∣

∣u′(α0 + α1y)
∣

∣

) ∣

∣u′′(α0 + α1y)
∣

∣

=Ū1(α)

Thus, |U1(w, α| ≤ Ū1, where Ū1 = maxcases (a)−(d) supα∈Q2
Ū1(α). So,

∥

∥

∥

∥

M · U1(w, α) ·

(

1
w

)∥

∥

∥

∥

≤ ‖M‖ · |U1(w, α)| ·

∥

∥

∥

∥

(

1
w

)∥

∥

∥

∥

≤ K1Ū1(1 + w2),

where K1 = ‖M‖.

A.4 Their function h(α) is given by (ODE-DG). We have that

∥

∥

∥

∥

∫

M · U1(w, α) ·

(

1
w

)

πα(dw)−

∫

M ′ · U1(w, α
′) ·

(

1
w

)

πα′(dw)

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫

M · U1(w, α) ·

(

1
w

)

πα(dw)−

∫

M ′ · U1(w, α) ·

(

1
w

)

πα(dw)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

M ′ · U1(w, α) ·

(

1
w

)

πα(dw)−

∫

M ′ · U1(w, α
′) ·

(

1
w

)

πα(dw)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

M ′ · U1(w, α
′) ·

(

1
w

)

πα(dw)−

∫

M ′ · U1(w, α
′) ·

(

1
w

)

πα′(dw)

∥

∥

∥

∥

≤Ū1

∫

(1 + w2)πα(dw) · ‖M −M ′‖+K1

∫

|U1(w, α)− U1(w, α
′)| (1 + w2)πα(dw)
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+K1

(

K3 |α0 − α′
0|+K4 |α1 − α′

1|
)

where K3 and K4 are given by the Lipschitz continuity of πα. We only need to show

now that U1(w, α) is Lipschitz continuous. Since

|u′′(α0 + α1w)− u′′(α′
0 + α′

1w)| =
∣

∣

∣
u′′′(ξ)

(

(α0 − α′
0) + (α1 − α′

1)w
)∣

∣

∣

≤ |u′′′(ξ)|
(

|α0 − α′
0|+ |α1 − α′

1|w
)

≤ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

(

|α0 − α′
0|+ |α1 − α′

1|w
)

,

|u′(α0 + α1w)− u′(α′
0 + α′

1w)| =
∣

∣

∣
u′′(ξ′)

(

(α0 − α′
0) + (α1 − α′

1)w
)∣

∣

∣

≤ |u′′(ξ′)|
(

|α0 − α′
0|+ |α1 − α′

1|w
)

≤ sup
α0,α1,w

|u′′(α0 + α1w)|
(

|α0 − α′
0|+ |α1 − α′

1|w
)

,

∣

∣u′(ct+1)− u′(c′t+1)
∣

∣ =
∣

∣u′′(ξ′′)(ct+1 − c′t+1)
∣

∣

≤ |u′′(ξ′′)|
∣

∣ct+1 − c′t+1

∣

∣

≤ sup
α0,α1,w

|u′′(min {α0 + α1w,w})|
∣

∣ct+1 − c′t+1

∣

∣ .

There are 10 different cases of
∣

∣ct+1 − c′t+1

∣

∣ to analyze:

(a) If ct+1 = y = c′t+1, then
∣

∣ct+1 − c′t+1

∣

∣ = 0.

(b) If ct+1 = α0 + α1y and c′t+1 = y, then by assumption, α′
0 + α′

1y > y ≥ α0 + α1y, so

that

∣

∣ct+1 − c′t+1

∣

∣ = |α0 + (α1 − 1)y| = |(1− α1)y − α0| < |(α′
0 − α0) + (α′

1 − α1)y|

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ.

(c) If ct+1 = R(1−α1)w−α0R+ y and c′t+1 = y, then α′
0+α

′
1y > y ≥ α0+α1y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |R(1− α1)w − α0R| = R |(1− α1)w − α0| < R |(α′
0 − α0) + (α′

1 − α1)w|

≤R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.
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(d) If ct+1 = α0 +Rα1(1− α1)− Rα0α1 + α1y and c′t+1 = y, then

y < α0 + α1y, α′
0 + α′

1w > w ≥ α0 + α1w,

and R(1− α1)w − α0R + y ≥ α0 +Rα1(1− α1)− Rα0α1 + α1y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |α0 +Rα1(1− α1)−Rα0α1 + α1y − y|

≤R |(1− α1)w − α0| ≤ R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(e) If ct+1 = α0 + α1y and c′t+1 = α′
0 + α′

1y, then

∣

∣ct+1 − c′t+1

∣

∣ = |α0 + α1y − α′
0 − α′

1y| ≤ |α0 − α′
0|+ |α1 − α′

1| ȳ.

(f) If ct+1 = R(1− α1)w − α0R + y and c′t+1 = α′
0 + α′

1y, then

y ≥ α′
0 + α′

1y, α′
0 + α′

1w > w ≥ α0 + α1w,

and α0 + Rα1(1− α1)− Rα0α1 + α1y ≥ R(1− α1)w − α0R + y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |R(1− α1)w − α0R + y − α′
0 − α′

1y|

=R(1− α1)w − α0R + y − α′
0 − α′

1y

≤α0 + α1

(

R(1− α1)w − α0R + y
)

− α′
0 − α′

1y

=(α0 − α′
0) + (α1 − α′

1)y +Rα1

(

(1− α1)w − α0

)

≤(α0 − α′
0) + (α1 − α′

1)ȳ +Rᾱ1

(

(α′
1 − α1)w − (α′

0 − α0)
)

≤(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +Rᾱ1w) |α1 − α′

1| .

(g) If ct+1 = α0 +Rα1(1− α1)− Rα0α1 + α1y and c′t+1 = α′
0 + α′

1y, then

y ≥ α′
0 + α′

1y, α′
0 + α′

1w > w ≥ α0 + α1w,

and α0 + Rα1(1− α1)− Rα0α1 + α1y ≤ R(1− α1)w − α0R + y, so that

∣

∣ct+1 − c′t+1

∣

∣ = |α0 +Rα1(1− α1)− Rα0α1 + α1y − α′
0 − α′

1y|

63



=R(1− α1)w − α0R + y − α′
0 − α′

1y

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ +Rα1 |(1− α1)w − α0|

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ +Rᾱ1

(

|α0 − α′
0|+ |α1 − α′

1|w
)

=(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +Rᾱ1w) |α1 − α′

1| .

(h) If ct+1 = R(1− α1)w − α0R + y and c′t+1 = R(1− α′
1)w − α′

0R + y, then

∣

∣ct+1 − c′t+1

∣

∣ ≤ R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(i) If ct+1 = R(1− α1)w − α0R+ y and c′t+1 = α′
0 +Rα′

1(1− α′
1)−Rα′

0α
′
1 + α′

1y, then

w ≥ α0 + α1w R(1− α1)w − α0R + y < α0 +Rα1(1− α1)−Rα0α1 + α1y

w ≥ α′
0 + α′

1w R(1− α′
1)w − α′

0R + y ≥ α′
0 +Rα′

1(1− α′
1)− Rα′

0α
′
1 + α′

1y

so that, if ct+1 − c′t+1 ≥ 0, then

∣

∣ct+1 − c′t+1

∣

∣ =R(1− α1)w − α0R + y − α′
0 − Rα′

1(1− α′
1) +Rα′

0α
′
1 − α′

1y

≤α0 +Rα1(1− α1)−Rα0α1 + α1y − α′
0 −Rα′

1(1− α′
1) +Rα′

0α
′
1 − α′

1y

=(α0 − α′
0) + (α1 − α′

1)y + (α1 − α′
1)R
(

(1− α1)w − α0

)

+ α′
1R
(

(α′
0 − α0) + (α′

1 − α1)w
)

≤ |α0 − α′
0|+ |α1 − α′

1| ȳ + |α1 − α′
1|Rw +Rᾱ1

(

|α′
0 − α0|+ |α′

1 − α1|w
)

=(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1| .

On the other hand, if ct+1 − c′t+1 ≤ 0, then

∣

∣c′t+1 − ct+1

∣

∣ =α′
0 +Rα′

1(1− α′
1)−Rα′

0α
′
1 + α′

1y − R(1− α1)w + α0R− y

≤R(1− α′
1)w − α′

0R + y −R(1− α1)w + α0R − y

≤R
(

|α0 − α′
0|+ |α1 − α′

1|w
)

.

(j) If ct+1 = α0+Rα1(1−α1)−Rα0α1+α1y and c
′
t+1 = α′

0+Rα
′
1(1−α

′
1)−Rα

′
0α

′
1+α

′
1y,
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then

∣

∣ct+1 − c′t+1

∣

∣ = |α0 +Rα1(1− α1)− Rα0α1 + α1y − α′
0 −Rα′

1(1− α′
1) +Rα′

0α
′
1 − α′

1y|

≤(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1| .

So, since R ≥ 1, ȳ > 0 and ᾱ1 > 0, I have that in general

∣

∣ct+1 − c′t+1

∣

∣ ≤ (1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1| .

|U1(wα)− U1(w, α
′)| =

∣

∣

∣

(

βREtu
′(ct+1)− u′(α0 + α1w)

)

u′′(α0 + α1w)

−
(

βREtu
′(c′t+1)− u′(α′

0 + α′
1w)
)

u′′(α′
0 + α′

1w)
∣

∣

∣

=
∣

∣

∣

(

βREtu
′(ct+1)− u′(α0 + α1w)

)(

u′′(α0 + α1w)− u′′(α′
0 + α′

1w)
)

+u′′(α′
0 + α′

1w)
(

βREtu
′(ct+1)− u′(α0 + α1w)− βREtu

′(c′t+1) + u′(α′
0 + α′

1w)
)∣

∣

∣

≤ |βREtu
′(ct+1)− u′(α0 + α1w)| |u

′′(α0 + α1w)− u′′(α′
0 + α′

1w)|

+ |u′′(α′
0 + α′

1w)|
(

βREt

∣

∣u′(ct+1)− u′(c′t+1)
∣

∣ + |u′(α0 + α1w)− u′(α′
0 + α′

1w)|
)

≤(1 + βR) sup
α0,α1

∣

∣u′(min
{

αo + α1y, y
}

)
∣

∣ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

·
(

|α0 − α′
0|+ |α1 − α′

1|w
)

+ sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2

·
(

βR
[

(1 +Rᾱ1) |α0 − α′
0|+ (ȳ +R(1 + ᾱ1)w) |α1 − α′

1|
]

+
[

|α0 − α′
0|+ |α1 − α′

1|w
])

=K5 |α0 − α′
0|+K6 |α1 − α′

1|+K7 |α1 − α′
1|w

where

K5 =(1 + βR) sup
α0,α1

∣

∣u′(min
{

αo + α1y, y
}

)
∣

∣ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣

+ sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2
(

βR(1 +Rᾱ1) + 1
)

,

K6 = sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2
ȳ,

K7 =(1 + βR) sup
α0,α1

∣

∣u′(min
{

αo + α1y, y
}

)
∣

∣ sup
α0,α1

∣

∣u′′′(min
{

α0 + α1y, y
}

)
∣

∣
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+ sup
α0,α1

∣

∣u′′(min
{

αo + α1y, y
}

)
∣

∣

2
(

R(1 + ᾱ1) + 1
)

.

Thus, I have the Lipschitz continuity of (ODE-DG), i.e. h(α,M).

Now, define v(α,w) =
∑

n(P
n
α − πα)H(α,w). Let’s see that it is well defined. For that,

since ‖P n
α − πα‖φ ≤ Kαρ

n
α, as was established before (see the proof of Dφ-continuity and

differentiability), I have that |(P n
α − πα)H(α,w)| ≤ Kα ‖H‖φ ρ

n
αφ(w). Thus,

∑

n

|(P n
α − πα)H(α,w)| ≤

cα ‖H‖φ
1− ρα

φ(w) <∞.

Furthermore, I have that (I − πα)v(α,w) = H(α,w)− h(α),

|v(α,w)| ≤
Kα ‖H‖φ
1− ρα

φ(w) ≤ K8(1 + w)

and Pαv(α,w) is Lipschitz continuous.

A.5 If w ≤ ¯̄w, then wt ≤ ¯̄w for all t ≥ 0, while if w > ¯̄w, then wt ≤ w, so that

Ew,α(I((α) ∈ Q2, k ≤ t) |wt+1|
q) ≤K8(1 + wq),

where K8 ≥ max {1, ¯̄w}.

A.6 This holds by assumption C.

A.7 Corollary A.7 ensures this.

Finally, corollary 16 of Benveniste et al. (1990) ensures that:

Corollary A.9. αt converges to α
∗ a.s.

Proof of corollary 4.2. This results is a direct application of theorem 22 of Benveniste et al.

(1990, p.244). The previous proof showed that their conditions (1.10.2)-(1.10.4) are satisfied.

Additionally, (1.10.6) is satisfied by assumption. It is only necessary to show that their

condition (1.10.5) also holds. To see this, notice that the agent’s α∗-expected squared regret

can be considered a function of three different set of consumption rule parameters. In
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particular rewrite it as

V (α, α′, σ) =

∫

(

βREtu
′(cb(α′, wt+1))− u′(cb(α,wt))

)2

πσ(dw),

which is a strictly convex function of α. This and our previous results imply that

V (α∗, α∗, α∗) =V (α, α, α)− (1−Rβ)(α∗ − α)h(α) + (α∗ − α)Vσ +
1

2
(α∗ − α)Vαα(α

∗ − α)T

≥V (α, α, α)− (1−Rβ)(α∗ − α)h(α) +
1

2
(α∗ − α)Vαα(α

∗ − α)T ⇐⇒

0 ≥ V (α∗, α∗, α)−V (α, α, α) ≥ −(1− Rβ)(α∗ − α)h(α) +
1

2
(α∗ − α)Vαα(α

∗ − α)T ⇐⇒

(1−Rβ)(α∗ − α)h(α) ≥
1

2
(α∗ − α)Vαα(α

∗ − α)T ⇐⇒

(α− α∗)h(α) ≤−
1

2(1−Rβ)
(α∗ − α)Vαα(α

∗ − α)T

<−
1

2(1−Rβ)
inf ‖Vαα‖ ‖α− α∗‖2

<− δ ‖α− α∗‖2

for some δ > 0.
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