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Abstract

I present a three player dynamic network theoretic model where players are far-

sighted and asymmetric. Unlike the previous literature that imposes an exogenous

protocol governing the order of negotiations, I allow the identity of the players who

form a link in a given period to depend endogenously on player characteristics. Im-

portantly, I show how this can give di�erent predictions regarding attainment of the

complete network relative to models with an exogenous protocol. Regardless of whether

the complete network is e�cient, a key dynamic trade o� drives whether the complete

network is attained in my model. A pair of players (insiders) may form a link with

each other but, even though link formation is always myopically bene�cial, each insider

then refuses subsequent link formation with the third player (outsider) because the

eventual attainment of the complete network makes each insider worse o� relative to

the insider�outsider network.

JEL: C70, C71, C73
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1 Introduction

As noted recently by Bloch and Dutta (2011, p.762) the coalition and network theory liter-

atures have traditionally used static frameworks to model coalition and network formation.
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for useful comments and discussion as well as seminar and conference participants at many seminars and
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While some of these frameworks have incorporated notions of farsightedness whereby play-

ers anticipate their deviations will induce deviations by other players (e.g. Ray and Vohra

(1997), Page et al. (2005) and Herings et al. (2009)), the role of time plays no explicit role

in these notions of �introspective farsightedness� (Dutta et al. (2005)). Conversely, even

though Watts (2001) and Jackson and Watts (2002) represent early examples of frameworks

explicitly modeling the dynamic network formation process, they assume players act myopi-

cally: players' decisions are completely determined by the e�ect of their actions on current

period payo�s. Only recently have Konishi and Ray (2003) and Dutta et al. (2005) devel-

oped dynamic models of coalition and network formation where players are farsighted in the

sense that their actions in any period are determined by the e�ect of their actions on their

discounted stream of payo�s.

Nevertheless, dynamic models of coalition and network formation raise an important

issue: what is the order in which players or coalitions have the opportunity to form links

or coalitions over time? That is, what is the protocol governing the �order of negotiations�?

Dutta et al. (2005), and also Aumann and Myerson (1988) in their extensive form link

formation game, impose an exogenous protocol (random in the former, deterministic in the

latter) that determines the pair of players who can form a link in the given period. But,

naturally, these modeling choices are not without consequence. Indeed, as discussed by Ray

and Vohra (1997, p.44) in the context of the Aumann and Myerson (1988) link formation

game, the sensitivity of equilibria to the assumed exogenous order of negotiations is well

known. This sensitivity is especially problematic because, as stated by Jackson (2008, p.72),

�... it is not clear what a natural ordering is�.

The main contribution of this paper is the development of a dynamic farsighted model of

network formation where there is no exogenous order of negotiations but rather the identity

of the pair of players who form a link in a given period depends endogenously on player

characteristics. In doing so, a new equilibrium concept emerges and I call this concept a

Farsighted Dynamic Network Equilibrium (FDNE). Of course, endogenizing which players

form a link in a given period may not be important in and of itself. However, I develop

an example illustrating that the complete network will be attained when the pair of players

who have an opportunity to form a link in a period is randomly chosen (i.e. exogenous) but

the complete network is not attained when the identity of the linking players in a period is

endogenous. This di�erence arises even though link formation is always myopically attractive

and the complete network is e�cient in the sense that it maximizes the aggregate one period

payo�. Thus, endogenizing which players form a link in a given period can have a substantive

impact on the predicted equilibrium path of network formation and the attainment of the

complete network.
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To endogenize which players form a link in a given period, I embed a simultaneous move

�announcement game� in each period. In an announcement game, each player announces

the link it wants to form and so the order in which links form over time depends endoge-

nously on player characteristics. Moreover, players are farsighted because they base their

announcements on continuation payo�s rather than one period payo�s. But, given the com-

plexity added by solving a simultaneous move game in each period of a dynamic game with

farsighted players, I only consider a three player game and make two important assumptions

to maintain analytical tractability. First, like Dutta et al. (2005), only one link can form in

any given period. Second, unlike Dutta et al. (2005) but like Seidmann (2009), agreements

formed in previous periods are binding. Given this assumption, the complete network is an

absorbing state which permits the use of backward induction to solve the equilibrium path

of network formation. I call this path a Farsighted Dynamic Network Equilibrium (FDNE).

Solving the announcement game in each period requires a simultaneous move equilibrium

concept. As is well known (e.g. Jackson (2005, pp.26-27)), the dependence of link formation

on mutual consent of the linking players makes the use of Nash equilibrium problematic and

necessitates some coalitional equilibrium concept. An obvious choice would be Coalition

Proof Nash Equilibrium (CPNE; Bernheim et al. (1987)).1 However, CPNE non�existence

arises due to Condorcet paradox situations and these situations arise frequently even in my

simple setting which questions the fundamental validity of CPNE to explain strategic network

formation in dynamic contexts and naturally leads to similar but stronger concepts. To this

end, I use a slight variant of the Equilibrium Binding Agreement solution concept (EBA)

originally developed by Ray and Vohra (1997) and suggested by Diamantoudi (2003). This

deals with the CPNE non�existence problem because EBA existence only relies on existence

of a Nash equilibrium. Moreover, EBA is a desirable concept in itself given Bloch and Dutta

(2011, p.761) state that an EBA �... captures �almost� perfectly the intuitive basis of stability

in group formation�.

The assumption that links formed in previous periods are binding and the use of an

EBA to solve the announcement game within a period creates a distinction between the way

that coalitions interact contemporaneously versus inter�temporally. When the link to be

formed in the current period is still �under negotiation�, an EBA allows coalitions to break

up into subcoalitions costlessly. Thus, contemporaneous coalition formation is highly �uid.

However, the assumption that links formed in previous periods are binding places rigidity

on the nature of inter�temporal coalition formation. Of course, the appropriateness of this

1Indeed, Bernheim et al. (1987) de�ne perfectly CPNE as a CPNE in every subgame and, as described
in detail later, an FDNE will essentially be an Equilibrium Binding Agreement (Ray and Vohra (1997)) in
every subgame.
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dichotomy is application dependent. However, I view this dichotomy as a strength rather

than a weakness of the model. For example, the dichotomy is well suited to a prominent

application of network theory which is international trade agreements. I discuss such an

application later in the paper and give examples of how the order in which countries begin

bilateral trade agreement negotiations does not necessarily translate into the order in which

they form agreements even if some of these countries already have a bilateral agreements.

That is, previously formed agreements do not in�uence the sequential way that negotiations

may commence and/or breakdown within the current period.

A second contribution of the paper is that I show how the complete network may fail to

obtain even if link formation is always myopically bene�cial (i.e. �link monotonicity� (Dutta

et al. (2005)) holds) and the complete network is e�cient.2 This possibility arises because

the presence of negative link externalities can mean the one period payo� for players in a

one�link network (i.e. �insiders�) exceeds the one period payo� under the complete network.

That is, insiders have an �insider exclusion incentive� because they want to exclude the third

player (i.e. �outsider�) from multilateral expansion to the complete network. This insider

exclusion incentive plays a key dynamic role in determining whether the complete network

obtains.

Attainment of the complete network depends on a dynamic trade o� faced by insiders.

On one hand, the myopic attractiveness of link formation means that forming an additional

link and becoming the �hub� is attractive for an insider. But, on the other hand, an insider

anticipates the eventual attainment of the complete network which is unattractive because

of the insider exclusion incentive. The complete network is attained when the discount

factor falls below a threshold because then the myopic link formation incentive dominates.

Here, the �most attractive� insider becomes the �hub� on the path to the complete network.

But the complete network is not attained when the discount factor exceeds the threshold

because then the insider exclusion incentive dominates. Here, the two �most attractive�

players remain insiders. Thus, the insider exclusion incentive drives the possible failure to

obtain the complete network in my dynamic setting despite the e�ciency of the complete

network and despite the myopic attractiveness of link formation.

After presenting the FDNE under the general one period payo� speci�cation just de-

scribed, I present an application of the three player game. International trade agreements

have been a persistent application of network and coalition theory where a bilateral trade

agreement between two countries in interpreted as a link and the complete network repre-

sents global free trade (see, e.g., Yi (1996), Goyal and Joshi (2006), Furusawa and Konishi

(2007), Seidmann (2009), Zhang et al. (2011), Zhang et al. (2013) and Zhang et al. (2014)).

2To be clear, there are no transfers in the model.
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Indeed, three country games are commonly used in the trade agreements literature with

prominent recent examples including Saggi and Yildiz (2010) and Saggi et al. (2013). I

present a three country oligopolistic model of international trade and show that the one

period payo�s exhibit link monotonicity, negative link externalities and insider exclusion

incentives. Thus, the FDNE characterization described in the main sections of the paper

apply. As such, the insider exclusion incentive plays a key role in determining whether global

free trade is attained. Moreover, country characteristics endogenously determine the order

in which countries form bilateral agreements.

The rest of the paper proceeds as follows. Section 2 develops the network terminology

and equilibrium concepts. Sections 3 and 4 characterize the FDNE with symmetric and

asymmetric players. Section 5 presents the example illustrating that the equilibrium pre-

dictions of the FDNE di�er from that if the players who can form a link in a period are

chosen randomly. Section 6 gives a simple application to international trade agreements and

Section 7 discusses the sensitivity of the model to particular assumptions. Finally, Section

8 concludes. Appendix A collects proofs not given in the text.

2 Network formation games and equilibrium

2.1 Preliminaries

The three player game is an in�nite horizon network formation game. N denotes the set

of players. Two assumptions make the network formation model tractable. First, at most

one link can form in any given period. Second, links formed in previous periods cannot

be severed. Obviously, the appropriateness of these assumptions is application speci�c.

However, these assumptions (including restriction to a three player game) �t naturally into

a trade agreements application. Such an application is relevant given trade agreements is

one area that has seen numerous papers apply network theory. I present such an example

in Section 6. I also discuss the (lack of) importance regarding the one link per period

assumption in Section 7.

Importantly, the no severance assumption implies the complete network is an absorbing

state. Since attention below is restricted to Markov strategies, the network remains un-

changed forever once no link forms in period t. This happens after, at most, three periods.

A network g is simply a collection of links. Figure 1 depicts the possible networks and

network position terminology. Figure 1 shows that Ø and gc denote, respectively, the empty

and complete networks while gHi denotes the hub�spoke network with player i as the hub

and gij denotes the insider�outsider network where players i and j are insiders.
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Figure 1: Networks and position terminology

Letting gt0 denote the network at the beginning of the current period t0, G (gt0) =

(gt0+1, gt0+2, ...) denotes a path of networks from the end of the current period onwards.

Sometimes it will be convenient to leave gt0 and gt0+2, ... implicit or unspeci�ed. In these

cases, 〈gt0+1〉 denotes the path of networks. To avoid the redundant repetition of net-

works once the network remains unchanged forever, I abuse the network path notation and

let the last network in the path indicate the network that remains forever. For example,

〈gij〉 =
(
gij, g

H
i , g

c
)
indicates the network path beginning at the insider�outsider network gij

reaches the complete network gc via the hub�spoke network gHi and remains at the complete

network forever. Alternatively, 〈Ø〉 = Ø indicates the network path that begins at the empty

network and remains there forever.

Given a vector of player characteristics α = (αi, αj, αk) and a vector of other pay-

o� relevant parameters τ , vi (g; θ) denotes player i's one period payo� from network g

where θ = (α, τ). Player i's continuation payo� from the path of networks G (gt0) is then

Vi (G (gt0) ; θ) =
∑∞

t=t0+1 δ
t−t0−1vi (gt; θ) where δ is the discount factor. A coalition S ⊆ N

prefers a path of networks G (gt0) over another path G ′ (gt0), denoted G (gt0) �S G ′ (gt0), if
Vi (G (gt0) ; θ) > Vi (G ′ (gt0) ; θ) for all i ∈ S.

The notion of a coalition structure will be crucial for the equilibrium concept. A coalition

structure, denoted P , is a partition on the set of players. Each element of the coalition struc-

ture is a coalition. The possible coalition structures are: i) the grand coalition N = {i, j, k},
ii) the singletons coalition structure P ∗ ≡ {{i} , {j} , {k}}, and iii) coalition structures of the

form Pij = Pk ≡ {{i, j} , {k}}.3

2.2 Actions and strategies

Given the assumption of one link per period, each period can be characterized by the network

g that exists at the beginning of the period. Given the network at the beginning of a period

3One could think of coalition structures in the following manner. The grand coalition N represents the
situation where all players are in a single negotiating room. A coalition structure Pij represents the situation
where either k left the initial negotiating room or i and j left the initial negotiating room together. As a
result, k is now in one room while i and j are in a second room. The coalition structure P ∗ represents the
situation where either i or j left the room they shared in Pij so that each player is now in a separate room.
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is g, players play a simultaneous move �announcement game� to determine which link forms

in the period. Like Seidmann (2009), I refer to this announcement game as the �subgame�

at network g (perhaps more apt would be �stage game�).

For the subgame at network g, player i's action space Ai(g) represents the set of an-

nouncements player i can make. For a coalition S ⊆ N , AS = Πi∈SAS (g) has an analogous

interpretation. Table 1 shows a player's action space consists of two types of announcements

ai(g) ∈ Ai(g). First, the player with whom it wants to link with but has not yet done so.

Second, no announcement, denoted φ. A link forms when both members of the proposed

link announce in favor: the link between i and j forms if and only if ai(g) = j and aj(g) = i.

Network
Player action space

Ai (g) Aj (g) Ak (g)

Ø {φ, j, k} {φ, i, k} {φ, i, j}
gij {φ, k} {φ, k} {φ, i, j}
gHi {φ} {φ, k} {φ, j}
gc {φ} {φ} {φ}

Table 1: Action space for each subgame

A Markov strategy for player i, σi, assigns an action ai (g) for every network g. Notice

that a strategy pro�le σ = (σi, σj, σk) and an initial network gt0 at the beginning of period

t0 induce a unique network path G (gt0) = (gt0+1, gt0+2, ...) from period t0 onwards. Thus, σ

and gt0 induce a continuation payo� for player i of Vi (G (gt0) ; θ) =
∑∞

t=t0+1 δ
t−t0−1vi (gt; θ).

Given this relationship between a strategy pro�le and continuation payo�s, players have

preferences over action pro�les and network outcomes in each subgame.4 To this end, I refer

to a network g′ as most preferred for a coalition S ⊆ N in a subgame at network g if, for

every i ∈ S, Vi (〈g′〉 ; θ) ≥ Vi (〈g′′〉 ; θ) for all possible outcomes g′′ 6= g′ of the subgame at

network g (strictly most preferred if the inequality is strict).5 That is g′ is most preferred for

a coalition S in the subgame at network g if, for each member of S, g′ induces the highest

continuation payo� of all possible outcomes of the subgame.

2.3 Equilibrium

As discussed in the introduction and at the beginning of the previous section, the dynamic

game embeds a simultaneous move link announcement game in each period (i.e. each sub-

4Formally, consider two strategy pro�les σ and σ′ that di�er only because the respective action pro�les
at some network gt0 are a (gt0) and a′ (gt0). Then, σ and σ′ induce the respective network paths G (gt0)
and G′ (gt0). Thus, player i's respective continuation payo�s from a (gt0) and a′ (gt0) are Vi (G (gt0) ; θ) and
Vi (G′ (gt0) ; θ). Hence, player i prefers a (gt0) over a′ (gt0) if and only if G (gt0) �i G′ (gt0).

5Using standard network notation by letting ij denote a link between i and j, the possible outcomes of
the subgame at network g are {g + ij | ij /∈ g}.
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game). The equilibrium concept used to solve the link announcement game in each subgame

is a slight variation on Equilibrium Binding Agreement (EBA; Ray and Vohra (1997)) sug-

gested by Diamantoudi (2003).

The key idea of an EBA is that deviating players anticipate their deviation induces

reactions by other players. This is formalized by a recursive de�nition. To de�ne an EBA,

let β (P, g) denote the set of Nash equilibrium, given network g, where each coalition in

the coalition structure P is treated as an individual player.6 Then, given the subgame at a

network g, the de�nition of an EBA for the three player game proceeds as follows:

1. De�ne B (P ∗, g) = β (P ∗, g) as the EBAs for P ∗.

That is, the set of EBAs for the singletons coalitions structure P ∗ is the set of Nash

equilibrium.

2. a (g) ∈ β (Pij, g) is an EBA for Pij, denoted a (g) ∈ B (Pij, g), if there is no self enforcing

deviation for i or j. A deviation by, say, i from ai (g) to a′i (g) is self enforcing if there

exists a′−i (g) such that i) a′ (g) =
(
a′i (g) , a′−i (g)

)
∈ B (P ∗, g) and ii) i prefers any such

a′ (g) to a (g).

That is, an action pro�le a (g) is an EBA for the coalition structure Pij if i) it is a Nash

equilibrium between S = ij and k and ii) i nor j have a self enforcing deviation.7 A

deviation by, say, i from ai (g) to a′i (g) is self enforcing if a′i (g) is part of an EBA for

the induced coalition structure P ∗ (i.e. part of a Nash equilibrium) and i prefers any

such EBA to a (g).

3. a (g) ∈ β (N, g) is an EBA for N , denoted a (g) ∈ B (N, g), if there is no self enforcing

deviation by any coalition S ⊂ N . A deviation by S from aS (g) to a′S (g) is self

enforcing if there exists a′−S (g) such that i) a′ (g) =
(
a′S (g) , a′−S (g)

)
∈ B (PS, g) and

ii) S prefers any such a′ (g) to a (g). Additionally, if S = i and B (PS, g) is empty then

i's deviation from ai (g) to a′i (g) is self enforcing if i) there exists a′−i (g) such that

a′ (g) =
(
a′i (g) , a′−i (g)

)
∈ B (P ∗, g) and ii) i prefers any such a′ (g) over a (g).8

That is, an action pro�le a (g) is an EBA for the grand coalition N if i) it is Pareto

optimal and ii) no subcoalition of N has a self enforcing deviation. A deviation by a

coalition S ⊂ N from aS (g) to a′S (g) is self enforcing if a′S (g) is part of an EBA for

6A coalition's preferences are given by the coalition preference relation already described. That is, a
coalition has a pro�table deviation i� each coalition member prefers the new action pro�le over the old
action pro�le. Naturally, β (P ∗, g) is the usual set of Nash equilibrium since each coalition is a singleton, or
individual, player.

7Of course, S = ij is shorthand for S = {i, j}.
8Note, aS (g) = a′S (g) is permitted to allow S to break away from the coalition N . Similarly, ai (g) =

a′i (g) allows i to break away from S = ij in step 2.
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the induced coalition structure PS (or part of an EBA for P ∗ if S = i and there is no

EBA for Pjk) and each coalition member of S prefers any such EBA to a (g).

Notice that these steps de�ne EBAs for each coalition structure. So what are the EBAs for

the subgame at network g? If B (N, g) is non empty, then B (N, g) is the set of EBAs for the

subgame at network g. However, if B (N, g) is empty then the set of EBAs for the subgame

are the EBAs in the sets B (Pij, g). Finally, if B (Pij, g) is also empty for all ij then the

set of EBAs for the subgame is the set of Nash equilibrium B (P ∗, g). Intuitively, the set of

EBAs for the subgame at network g is the set of EBAs for the coarsest coalition structure

such that an EBA exists.9 Formally, an EBA is an action pro�le rather a link, but I will

often refer to the link induced by an EBA action pro�le as an EBA itself.

Given the de�nition of an EBA, De�nition 1 presents a new equilibrium concept for

dynamic network formation games. I call this equilibrium concept a Farsighted Dynamic

Network Equilibrium (FDNE).

De�nition 1. A path of networks G (Ø) = (g∗1, g
∗
2, ...) is a Farsighted Dynamic Network

Equilibrium (FDNE) if there is a strategy pro�le σ∗ such that: i) given g = Ø, σ∗ induces

the path of networks G (Ø) = (g∗1, g
∗
2, ...) and ii) for any subgame at a network g, the action

pro�le a∗ (g) is an Equilibrium Binding Agreement.

Intuitively, an FDNE is the equilibrium path of networks that emerges when the action

pro�le in each subgame, on and o� the equilibrium path, is an EBA of the associated

announcement game. Thus, an FDNE has a strong �avor of subgame perfection. Indeed,

since links formed in previous periods cannot be severed, an FDNE can be derived via

backward induction because the complete network is an absorbing state. Importantly, in each

subgame, player actions are based on continuation payo�s rather than one period payo�s.

The following two (highly stylized) examples illustrate the process of deriving an EBA in

a particular subgame and the process of deriving an FDNE using backward induction. Before

doing so, notice that, even though deviations are changes in action pro�les, deviations are

often more conveniently referred to as changes in networks. For example, given ai (Ø) = j

and aj (Ø) = i, the unilateral deviation by player i to ai (Ø) = φ yields g = Ø rather than

g = gij. Thus, i �deviates� from g = gij to g = Ø. To this end, let G (P, g) denote the

networks induced by the EBAs B (P, g) and let γ (P, g) denote the networks induced by

9Notice, the above recursion requires the deviating coalition prefer any such EBA a′ to the action
pro�le a under consideration. This was proposed by Diamantoudi (2003) and di�ers from Ray and Vohra
(1997) who require a deviating coalition merely prefer some EBA a′ to a. Essentially, Diamantoudi (2003)
assumes deviating coalitions anticipate �pessimistically� while Ray and Vohra (1997) assume they anticipate
�optimistically�.
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β (P, g). In a subgame, networks induced by a Nash equilibrium or an EBA are referred to

as, respectively, Nash networks and EBA networks.

Example 1. Denoting the players as s (small), m (medium) and l (large), the example

derives the EBA network for the subgame at the insider�outsider network g0 = gml. That

is, the network at the beginning of the period is g0. The three possible outcomes of the

subgame are gml, g
H
l and gHm . For illustration, assume the complete network emerges in the

following period if a hub�spoke network emerges in the current period. Given the one period

payo�s in Table 2, Table 3 computes continuation payo�s assuming δ = 4
5
(and normalizing

by (1− δ)).10

The example is highly simpli�ed because remaining insiders is strictly most preferred for

m and l (even though formation of any link is myopically bene�cial for each player in the

link). Indeed, given this strictly most preferred outcome of m and l, i) G (Pml, gml) = gml,

ii) the unique Nash network is γ (P ∗, gml) = gml and iii) gml is Pareto optimal for s and m as

well as s and l, i.e. gml ∈ γ (Psm, gml) and gml ∈ γ (Psl, gml). Indeed, gml ∈ G (Psm, gml) and

gml ∈ G (Psl, gml) because γ (P ∗, gml) = gml implies s has no self enforcing deviation from

gml. Moreover, gml = G (Psm, gml) (and gml = G (Psl, gml)) because m (l) has a unilateral

self enforcing deviation from g 6= gml to gml since γ (P ∗, gml) = gml.

Thus, gml ∈ G (N, gml) because gml is Pareto optimal for N and s has no self enforcing

deviation given that gml = G (Pml, gml). Indeed, gml = G (N, gml) because m and l have a

self enforcing deviation from g 6= gml to gml = G (Pml, gml). That is, the EBA is that no link

forms and the EBA network is that m and l remain insiders.�

Network

Ø gml gsl gsm gHl gHm gHs gc

(0, 0, 0) (−5, 15, 15) (14,−3, 14) (13, 13,−1) (7, 7, 17) (6, 18, 6) (19, 5, 5) (11, 11, 11)

Table 2: Network dependent one period payo�s (vs (g) , vm (g) , vl (g))

Network at end of current period (g1)
gHl gHm gml(

101
5
, 101

5
, 121

5

) (
10, 122

5
, 10
)

(−5, 15, 15)

Table 3: Normalized continuation payo�s (Vs (·) , Vm (·) , Vl (·)) given g0 = gml

Example 1 illustrates that an EBA is similar to a coalition proof Nash equilibrium

(CPNE). Each concept restricts attention to pro�table coalition deviations that are �self

10For example, l's normalized continuation payo� from becoming the hub, i.e. g1 = gHl , is

(1− δ)
(

17 + δ
1−δ11

)
= 17− 6δ = 12 1

5 .
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enforcing�. A deviation is self enforcing if it results in an action pro�le that is itself an

equilibrium. Thus, both concepts require that coalition deviations are robust to subsequent

deviation by coalition members. However, the key di�erence is that deviating players in a

CPNE assume other players' actions remain �xed following their deviation while deviating

players' in an EBA assume other players actions adjust in response to their own deviation.

Intuitively, deviating coalitions in an EBA anticipate the �equilibrium reactions� of other

players which is formalized by requiring the outcome of a coalition's deviation is an EBA of

the induced coalition structure.

Example 1 also illustrates that insiders remain insiders when doing so is most preferred

for each insider. Lemma 1 generalizes this intuition: most preferred networks that can be

sustained by coalitions are EBA networks. Following custom, g + ij denotes that the link

between i and j is added to the network g.

Lemma 1. Suppose the network at the beginning of period t is gt and �x a (g) for all g 6= gt.

If g′ = gt + ij or g′ = gt is most preferred for i and j then g′ is an EBA network in period

t. If g′ is strictly most preferred, then g′ is the unique EBA network in period t.

Proof. The only (possibly) pro�table deviation from g′ is the unilateral deviation by k.

However, regardless of ak (gt), ai (gt) = j and aj (gt) = i imply g′ = gt + ij while ai (gt) =

aj (gt) = φ implies g′ = gt. Two implications follow given g′ is most preferred for i and

j: i) g′ ∈ γ (Pij, gt) and ii) given i nor j have an incentive to deviate, g′ ∈ G (Pij, gt).

Thus g′ ∈ G (N, gt) because k has no self enforcing unilateral deviation from g′ to any

ĝ ∈ G (Pij, gt). Moreover, g′ = G (N, gt) if g′ is strictly most preferred by i and j because

then i and j have a self enforcing deviation from any ĝ 6= g′ to g′ ∈ G (Pij, gt).

Example 2 illustrates the process of deriving an FDNE by backward induction.

Example 2. Since the complete network is an absorbing state, consider the subgame at the

hub�spoke network g0 = gHl . That is, the network at the beginning of the period is g0 = gHl .

The two possibilities for the end of period network, g1, are g
H
l and gc. In either case, g1 is

an absorbing state. Thus, using Table 2, s and m have the same continuation payo�s across

either outcome: 7
1−δ and

11
1−δ respectively. Hence, g1 = gc is strictly most preferred for s and

m and Lemma 1 implies the unique EBA network is gc. That is, G
(
N, gHl

)
= gc. Given

Table 2, the same logic applies for any hub�spoke network meaning any hub�spoke network

expands to the complete network; i.e. G
(
N, gHi

)
= gc for any i.

Now consider the subgame at an insider�outsider network g0 = gij. For g0 = gml,

Example 1 illustrates that the EBA network is G (N, gml) = gml meaning that m and l

remain insiders. Similar calculations to Table 3 reveal that remaining insiders is strictly
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most preferred for any pair of insiders given δ = 4
5
. Thus, Lemma 1 implies the unique EBA

network is G (N, gij) = gij for any pair of insiders i and j given δ = 4
5
. That is, any pair of

insiders remain insiders.

Now consider the subgame at the empty network g0 = Ø. The four possibilities for the

end of period network, g1, are Ø, gml, gsl, and gsm. However, given any pair of insiders remain

insiders once an insider�outsider network forms, player i's (normalized) continuation payo�

from any such g1 is just the one period payo� vi (g1). Thus, Table 2 shows that becoming

insiders is strictly most preferred for m and l. In turn, Lemma 1 implies the unique EBA

network is G (N,Ø) = gml meaning m and l become insiders.

The FDNE is the equilibrium path of networks that emerges from solving the EBA

network in each subgame. Since m and l become insiders in period 1 and remain so forever

(given δ = 4
5
), the unique FDNE is gml.�

3 FDNE with symmetric players

In this section, I solve the Farsighted Dynamic Network Equilibrium (FDNE) of the three

player dynamic game introduced in the previous section. To do so, Condition 1 imposes

some structure on the one period payo�s.

Condition 1. Players are symmetric (i.e αi = αj = αk) and

i) vi (g + ij) > vi (g) and vj (g + ij) > vj (g)

ii) vi (g) > vi (g + jk) for g 6= Ø but vi (Ø) ≷ vi (Ø + jk) = vi (gjk)

iii) vi (gij) > vi (g
c) > vi (Ø).

Condition 1 is simple. Part i) is the �link monotonicity� property (e.g. Dutta et al.

(2005)): bilateral link formation myopically bene�ts the linking players. Part ii) says that,

except at the empty network, link formation between two players imposes negative link

externalities on the third player. Bilateral link formation at the empty network may or

may not impose negative externalities. Finally, part iii) says that the complete network

is more attractive than the empty network but insiders �nd the insider�outsider network

more attractive than the complete network. This possibility arises because even though link

monotonicity implies vi
(
gHi
)
> vi (gij), negative link externalities imply vi

(
gHi
)
> vi (g

c).

Intuitively, the �rst inequality in part iii) represents an �insider exclusion incentive�: insiders

have an incentive to exclude the outsider from direct expansion to the complete network.

The insider exclusion incentive plays a central role in the subsequent analysis. Additionally,

note that Condition 1 does not impose whether the complete network is the e�cient network

in the sense of maximizing the aggregate one period payo�.

12



I also impose the following Condition on continuation payo�s.

Condition 2. vi (gij) + δvi
(
gHj
)

+ δ2

1−δvi (g
c) > 1

1−δvi (Ø).

Condition 2 is a type of participation constraint.11 It says that a player receives a higher

continuation payo� from participating in the dynamic game as an insider�turned�spoke on

the path to the complete network than it would if no links ever formed. I refer to this as

a type of participation constraint because if Condition 2 fails then, given Condition 1, an

analogous condition also fails for the outsider in which case the insider�turned�spoke and

outsider can, via Lemma 1, ensure the empty network remains forever.

The �rst step in using backward induction to solve the FDNE is solving the EBA for

subgames at hub�spoke networks. However, this task is simple. Given link monotonicity, the

spokes have an incentive to form the �nal link. Thus, Lemma 1 implies the EBA at any hub�

spoke network is that spokes form the link leading to the complete network: G
(
N, gHi

)
= gc

for any i.

Rolling back to subgames at insider�outsider networks, insiders face a interesting trade o�

given any hub�spoke network expands to the complete network. Link monotonicity implies

vi
(
gHi
)
> vi (gij) so an insider has a myopic incentive to become the hub. However, doing so

will then lead to the complete network which is unattractive for an insider given the insider

exclusion incentive, i.e. vi (gij) > vi (g
c). An insider prefers to become the hub rather than

remain an insider forever if and only if vi
(
gHi
)

+ δ
1−δvi (g

c) > 1
1−δvi (gij). This reduces to the

No Exclusion (NE) condition:

δ < δ̄NE (θ) ≡
vi
(
gHi
)
− vi (gij)

vi (gHi )− vi (gc)
. (1)

The No Exclusion condition is intuitive: su�cient impatience, captured by δ < δ̄NE (θ),

places a relatively high weight on the bene�t derived from link monotonicity and being the

hub but a relatively low weight on the insider exclusion incentive. Lemma 2 formalizes the

role of the No Exclusion condition in subgames at insider�outsider networks.

Lemma 2. Assume Condition 1 holds and consider a subgame at an insider�outsider network

g = gij. The EBA networks are: i) gij when δ > δ̄NE (θ), but ii) the hub�spoke networks gHi
and gHj when δ < δ̄NE (θ).

Violation of the No Exclusion condition, δ > δ̄NE (θ), means each insider prefers remain-

ing an insider over becoming the hub on a path to the complete network. Underlying this

preference is a strong insider exclusion incentive. By Lemma 1, the EBA is that no link forms

11Condition 2 can be weakened so that the inequality only holds when δ ≤ δ̄NE (θ) (see equation (1)).
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and the insiders remain insiders.12 Conversely, satisfaction of the No Exclusion condition

means the insider exclusion incentive is su�ciently weak that each insider wants to become

the hub. In this case, multiplicity arises because the outsider is indi�erent between forming

a link with either insider.

The hub�spoke network gHi is an EBA network when δ < δ̄NE (θ), i.e. gHi ∈ G (N,Ø),

because gHi ∈ G (Pik, gij) implies j has no self enforcing deviation from gHi to gHj . gHi ∈
G (Pik, gij) follows because gij is most preferred for i and k. By symmetry, this logic also

implies gHj is an EBA network. Moreover, gij is not an EBA network because of the self

enforcing deviation by i and k to gHi ∈ G (Pik, gij). Therefore, the EBA networks in the

subgame at the insider�outsider network gij are the hub�spoke networks g
H
i and gHj .

Rolling back and solving the EBA in the subgame at empty network reveals the equilib-

rium path of networks which is the FDNE. Proposition 1 characterizes the FDNE.

Proposition 1. Assume Conditions 1�2 hold. The FDNE are: i) any insider�outsider

network gij when δ > δ̄NE (θ), ii) any path of bilateral links leading to the complete network

when δ < δ̄NE (θ).

Proposition 1 is depicted in Figure 2 where ΩI−O denotes the set of insider�outsider networks

and Ωc denotes the set of paths where bilateral link formation leads leads to the complete

network.

Violation of the No Exclusion condition, δ > δ̄NE (θ), implies each insider holds an insider

exclusion incentive and this incentive is su�ciently large that, despite the myopic incentive

to become the hub, remaining insiders is strictly most preferred for the insiders. However,

any insider�outsider network can emerge because of symmetry (see Lemma 1).

Figure 2: FDNE under symmetry

The logic underlying the FDNE when the No Exclusion condition holds, δ < δ̄NE (θ), is

more nuanced. The simple part is that the fear of preference erosion is su�ciently small that

the complete network emerges via a hub�spoke network from any insider�outsider network.

The nuances arise because of players' preferences over the (equilibrium) path of networks

stemming from each insider�outsider network. Given the multiplicity of EBAs at insider�

outsider networks, suppose, without loss of generality, that the strategy pro�le speci�es each

12In particular, ai (gij) = aj (gij) = φ is an EBA action pro�le.

14



player is the hub on some path to the complete network.13 This creates a Condorcet paradox

situation across the insider�outsider networks. An important advantage of using the EBA

solution concept is that, unlike other simultaneous move solution concepts (e.g. CPNE),

non�existence problems do not arise in this situation. Lemma 3 characterizes the EBA

networks in these Condorcet paradox situations.

Lemma 3. Consider the subgame at the empty network g = Ø. Assume, i) 〈gij〉 �ij 〈gik〉 �ik
〈gjk〉 �jk 〈gij〉, and ii) 〈gij〉 �i 〈Ø〉 for any i, j ∈ N . Then G (N,Ø) is empty. However, for

any i, j ∈ N , gij ∈ G (Pij,Ø) but Ø /∈ G (Pij,Ø).

Proof. To begin, note that γ (P ∗,Ø) = {Ø, gjk, gij, gik}. Moreover, gjk ∈ G (Pjk,Ø) because

i) gjk ∈ γ (Pjk,Ø), ii) gjk is most preferred for j, and iii) the deviation by k to ak (Ø) = i is not

self enforcing given gij ∈ γ (P ∗,Ø) when ak (Ø) = i. Similar logic establishes gik ∈ G (Pik,Ø)

and gij ∈ G (Pij,Ø). Thus, there are self enforcing deviations by i) S = jk from Ø and

gij to gjk ∈ G (Pjk,Ø), ii) S = ik from gjk to gik ∈ G (Pik,Ø) and iii) S = ij from gik to

gij ∈ G (Pij,Ø). Hence, G (N,Ø) is empty. Finally, Ø /∈ G (PS,Ø) for any S = ij because

〈gij〉 �S 〈Ø〉 implies Ø /∈ γ (PS,Ø).

The main idea behind Lemma 3 is simple. The insider�turned�spoke and outsider�

turned�spoke have a self enforcing deviation where they become insiders with the former

subsequently becoming the hub in the following period. This deviation is self enforcing

because the fear of being an outsider in a Nash network deters any subsequent deviation.

Similarly, any pair of players have a self enforcing deviation from the empty network which

installs themselves as insiders. Thus, there is no EBA for the grand coalition yet any insider�

outsider network gij, but not the empty network, is an EBA between S = ij and N \ S = k

(i.e. gij ∈ G (Pij,Ø)). Hence, the set of EBA networks in the subgame at the empty network

is ΩI−O and the FDNE are the set of paths Ωc where bilateral link formation leads to the

complete network.

4 FDNE with asymmetric players

I now move on to solve the FDNE with asymmetric players. Asymmetry brings out interest-

ing features of the equilibrium network formation process that are absent under symmetry.

As described in Section 2.1, player i's characteristics are summarized by αi. I model asym-

13Given there are three paths to the complete network here (one from each of the insider�outsider net-
works), the other possibility is that one player is the hub on two such paths. It is simple to show that this
does not a�ect the result being discussed.
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metry in a simple way: vk (g + ik) > vk (g + jk) if and only if αi > αj.
14 That is, link

formation is more attractive with a player who has a higher α.

I also weaken the one period payo� structure imposed under symmetry. Condition 3

summarizes.

Condition 3. Condition 1 holds except that

i) vk (g + ik) > vk (g + jk) if and only if αi > αj

ii) vi
(
gHk
)
≷ vi (gjk) if αk = min {αi, αj, αk}

iii) vi (gij) ≷ vi (g
c) if αk 6= min {αi, αj, αk}

iv) vi (g
c) ≷ vi (Ø) for αi = max {αi, αj, αk}

Part i) of Condition 3 captures how asymmetry a�ects one period payo�s. Part ii)

weakens the extent to which link monotonicity holds. An outsider, say player i, may not

bene�t from link formation with player k if player k is the least attractive player. Part iii)

weakens the extent to which insiders hold an insider exclusion incentive. The only insider�

outsider network where the insiders necessarily hold an insider exclusion incentive is when the

two most attractive players are insiders. Part iv) weakens the extent to which the complete

network is attractive relative to the empty network. Now, vi (Ø) > vi (g
c) is possible if player

i is the most attractive player.

Like under symmetry, the �rst step in using backward induction to solve the FDNE

remains simple. Link monotonicity still implies spokes bene�t from link formation. Thus,

spoke�spoke link formation is the EBA in subgames at hub�spoke networks and, hence, any

hub�spoke network expands to the complete network.

However, subgames at insider�outsider networks are richer under asymmetry relative to

symmetry. The added richness arises because an insider's exclusion incentive depends on

the characteristics of itself and its insider partner. As such, each insider has their own No

Exclusion condition. Speci�cally, player i prefers to become the hub rather than remain a

permanent insider with player j if and only if vi
(
gHi
)

+ δ
1−δvi (g

c) > 1
1−δvi (gij) which reduces

to player i's No Exclusion (NE) condition as an insider with player j:

δ < δ̄NEi,j (θ) ≡
vi
(
gHi
)
− vi (gij)

vi (gHi )− vi (gc)
. (2)

Lemma 4 extends Lemma 2 to the case of asymmetry.

Lemma 4. Assume Condition 3 holds and consider a subgame at an insider�outsider network

gij where αi > αj. The EBA networks are: i) gij when δ > max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
, but ii)

14Thus, the αi's are either scalars or there is a mapping that reduces the vector αi to a scalar summary
statistic.
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gHi when δ < max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
.

Like the symmetric case, the insiders remain insiders when the No Exclusion condi-

tion of both insiders is violated, δ > max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
, while the complete net-

work is eventually attained when the No Exclusion condition of both insiders is satis�ed,

δ < min
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
. Thus, the role of the insiders exclusion incentive embodied

in the No Exclusion condition remains central. However, two new features emerge under

asymmetry. First, the larger insider i always becomes the hub in a hub�spoke network.

Second, there is an intermediate range, δ ∈
(
δ̄NEi,j (θ) , δ̄NEj,i (θ)

)
, where only the No Exclusion

condition of the least attractive insider, player j, is satis�ed.15

Interestingly, the larger insider i becomes the hub in the EBA network when δ ∈(
δ̄NEi,j (θ) , δ̄NEj,i (θ)

)
even though only the smaller insider j wants to become the hub. The

main logic underlying this outcome emphasizes the distinguishing feature of the EBA solu-

tion concept whereby deviating players anticipate the equilibrium reactions of other players.

Speci�cally, gHi is the unique EBA network even though, given δ > δ̄NEi,j (θ) implies i prefers

to remain an insider, it is not a Nash network. Nevertheless, i anticipates that backing out

of the link with k does not necessarily lead to gij but rather that j and k will then form

their own link. More formally, i anticipates the link between j and k since gHj ∈ G (Pjk, gij).

gHj ∈ G (Pjk, gij) follows because g
H
j is strictly most preferred for j and the fear of being an

outsider in a Nash network deters k's deviation to ak (gij) = i. Thus, the anticipation of

being a spoke upon backing out of gHi deters i's deviation from gHi .

While the above logic is the key logic supporting gHi as the EBA network, an additional

deviation needs to be ruled out. Not only i prefers remaining an insider over becoming the

hub, but the insider�turned�spoke j also prefers remaining an insider. Nevertheless, the

joint deviation by i and j to gij is not self enforcing because gij /∈ G (Pij, gij) since, given

gHi is not a Nash network, j will then unilaterally deviate from aj (gij) = φ to aj (gij) = k

anticipating the unique Nash network gHj . Thus, gHi is an EBA network in a subgame at

an insider�outsider network when δ ∈
(
δ̄NEi,j (θ) , δ̄NEj,i (θ)

)
. Indeed, Lemma 1 implies gHi is

also an EBA network when δ ≤ δ̄NEi,j (θ) because then gHi is most preferred for i and the

outsider k. Thus, gHi is an EBA network in a subgame at an insider�outsider network when

δ < max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
.

It is simple to see that gHi is the unique EBA network when δ < max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
.

Lemma 1 establishes uniqueness when δ < δ̄NEi,j (θ) because gHi is strictly most preferred for

i and k. When δ ≥ δ̄NEi,j (θ), j and k have a self enforcing deviation from gij to g
H
j given ,

as discussed above, gHj ∈ G (Pjk, gij). Moreover i and j have a self enforcing deviation from

gHj to gHi ; the deviation is self enforcing, i.e. gHi ∈ G (Pik, gij), given g
H
i is most preferred

15This interval may be empty.
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for k and the fear of being a spoke in a Nash network deters any subsequent deviation by

i. Thus, gHi is the unique EBA network in a subgame at an insider�outsider network when

δ < max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
.

Rolling back to the subgame at the empty network and solving for the EBA reveals

the equilibrium path of network formation. Before proceeding to this characterization, the

following assumption and condition help simplify its presentation. It will also be useful to

distinguish the players as s, m and l where αl > αm > αs. These players can be interpreted

as the small (s), medium (m) and large (l) players.

Assumption 1. i) δ ≤ max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
implies 〈gml〉 =

(
gml, g

H
l , g

c
)
�m 〈Ø〉 = /O,

〈gsm〉 =
(
gsm, g

H
m , g

c
)
�s 〈Ø〉 = Ø and 〈gsl〉 =

(
gsl, g

H
l , g

c
)
�l 〈Ø〉 = Ø.

ii) δ̄NEl,s (θ) < δ̄NEm,s (θ) implies δ̄NEm,l (θ) < δ̄NEs,l (θ).

iii) If δ̄NEm,l (θ) < δ̄NEl,m (θ), then 〈gsm〉 = gsm �m 〈gml〉 =
(
gml, g

H
l , g

c
)
implies 〈gsm〉 =

gsm �s 〈gsl〉 =
(
gsl, g

H
l , g

c
)
.

Assumption 1 places restrictions on continuation payo�s. Part i) says that if the insider�

outsider network gml leads to the complete network then the discount factor is low enough

that i) Condition 2 holds for m as an insider with l, ii) Condition 2 holds for s as an insider

with m (and hence with l as well) and iii) the possibility of vl (Ø) > vl (g
c) cannot outweigh

the e�ect of link monotonicity for l in being an insider with s and then the hub. Parts ii)

and iii) of Assumption 1 rule out �cross player preference reversals�. Part ii) says that if a

�larger� insider l has a slacker No Exclusion condition compared with a �smaller� insider m

when the �xed insider partner is s, then the same is true when the �larger� insider is m, the

�smaller� insider is s and the �xed insider partner is l. Part iii) is more tedious. When m

and l are insiders, m's No Exclusion condition could be slacker than l's. Intuitively, this can

arise when the link monotonicity e�ect is stronger for more attractive players. Part iii) says

that if the more attractive player m prefers remaining a permanent insider with s rather

than being an insider with l and a spoke on the path to the complete network, then the less

attractive player s holds an analogous preference. Condition 4 now follows.

Condition 4. δ < max
{
δ̄NEs,m (θ) , δ̄NEm,s (θ)

}
Letting Ω̂c denote the set of paths where bilateral link formation leads to the complete

network via a hub�spoke network with the larger insider as the hub and de�ning δ̄m (θ) such

that 〈gml〉 =
(
gml, g

H
l , g

c
)
�m 〈gsm〉 if and only if δ < δ̄m (θ), Proposition 2 characterizes the

FDNE.16

16If 〈gsm〉 =
(
gsm, g

H
m , g

c
)

then the de�nition of δ̄m (θ) implies δ̄m (θ) ≡ vm(gml)−vm(gsm)

vm(gHm)−vm(gHl )
. If

〈gsm〉 = gsm the de�nition of δ̄m (θ) implies δ̄m (θ) is de�ned such that f (δ) = [vm (gml)− vm (gsm)] +
δ
[
vm
(
gHl
)
− vm (gml)

]
+ δ2

[
vm (gc)− vm

(
gHl
)]
> 0 i� δ < δ̄m (θ).
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Proposition 2. Assume Condition 3 and Assumption 1 hold. The FDNE is gml when

δ > max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
. Now suppose δ < max

{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
. If δ < δ̄m (θ) the

FDNE is
(
gml, g

H
l , g

c
)
. If δ > δ̄m (θ) the FDNE are Ω̂c if Condition 4 holds but gsm if

Condition 4 fails.

Figure 3 illustrates the FDNE where, for illustrative purposes, Condition 4 holds when

δ < max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
.

When δ > max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
, m and l prefer to remain insiders because they have

su�ciently strong insider exclusion incentives. Thus, Lemma 1 implies this is the unique

FDNE.

Whether multiple equilibria arise when δ ≤ max
{
δ̄NEl,m (θ) , δ̄NEm,l (θ)

}
depends on whether

m prefers the path 〈gml〉 =
(
gml, g

H
l , g

c
)
over 〈gsm〉. Myopically, m bene�ts from being an

insider with the larger player l. However, m may prefer to be an insider with the smaller

player s so that either i) it becomes the hub or ii) it can remain an insider and exploit its

No Exclusion condition when max
{
δ̄NEm,s (θ) , δ̄NEs,m (θ) , δ̄NEm,l (θ)

}
< δ̄NEl,m (θ).17 In either case,

m prefers to be an insider with l rather than s if and only if 〈gml〉 =
(
gml, g

H
l , g

c
)
�m 〈gsm〉

which reduces to δ < δ̄m (θ). Thus, gml is strictly most preferred for m and l and, hence(
gml, g

H
l , g

c
)
is the unique FDNE, when δ < δ̄m (θ).

Figure 3: FDNE under asymmetry

However, multiple equilibria can arise when δ ∈
(
δ̄m (θ) ,max

{
δ̄NEl,m (θ) , δ̄NEm,l (θ)

}]
and

do arise if Condition 4 holds. Then, like the symmetric case, multiplicity stems from a

Condorcet paradox situation across the insider�outsider networks: there is always a pair

of players who bene�t from the self enforcing deviation to install themselves as insiders.

Moreover, Lemma 3 applies because part i) of Assumption 1 implies part iii) of Lemma 3

holds. Thus, like Proposition 1, there is a self enforcing deviation from any action pro�le

(i.e. G (N,Ø) is empty), but the self enforcing deviations to the various insider�outsider

networks imply ΩI−O are the EBA networks for the subgame at the empty network. Thus,

Ω̂c are the FDNE.

The �nal case to consider for bilateral beliefs is when δ ∈
(
δ̄m (θ) ,max

{
δ̄NEl,m (θ) , δ̄NEm,l (θ)

}]
but Condition 4 fails. In this case, s and m both hold a No Exclusion incentive as insider

17The inequality does not hold in Figure 3. But when it does hold then, by application of Lemmas 1 and
4, gc is eventually obtained from gml but gsm remains permanently once attained.
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partners and remain insiders forever upon becoming insiders. Note that Condition 3 implies

Condition 4 can only fail if δ̄NEm,l (θ) < δ̄NEl,m (θ). Thus, given part iii) of Assumption 1, gsm

is strictly most preferred for s and m so, by Lemma 1, gsm is the unique FDNE. This may

seem like a counter�intuitive result: the least attractive players remain insiders. However,

the logic is simple. If larger players enjoy a greater myopic bene�t from becoming the hub,

the larger insider's No Exclusion condition can be slacker than the smaller insider's meaning

δ̄NEm,l (θ) < δ̄NEl,m (θ) could hold. Thus, as an insider with l, s and/or m may then become a

spoke even though it prefers remaining an insider with l. As such, despite the myopic appeal

of being an insider with l, s and m may prefer to form their own link to exploit the failure

of their No Exclusion condition and remain permanent insiders.

5 The protocol for link formation opportunities matters

A novel feature of the dynamic network formation model in the previous sections is there is

no exogenous protocol governing who has the opportunity to form a link in a given period.

Rather, who forms a link in a given period is determined endogenously by a simultaneous

move announcement game. This contrasts with, for example, Dutta et al. (2005) who assume

a random pair of players, called the active pair and denoted by η, have the opportunity to

form a link in a period.

Maintaining the assumption that links formed in previous periods cannot be severed

(which Dutta et al. (2005) do not impose), I will now present an example where the complete

network is not attained when the order of link formation is endogenous but is attained when

the active pair is randomly chosen in each period. De�ning a state as (g, η), i.e. a network

and an active pair, Dutta et al. (2005, p.152) loosely describe their equilibrium concept

by stating �... an equilibrium process of network formation is a strategy pro�le with the

property that there is no active pair at any state ... which can bene�t�either unilaterally

or bilaterally�by departing from [that state] ...�. Given players cannot sever links formed

in previous periods, a member of the active pair has a very simple action space: announce

it wants to form the link with the other member of the active pair or announce that it does

not want to do so. A link forms if and only if each member of the active pair announces in

favor of link formation. An equilibrium strategy pro�le is denoted by µ∗ (g, η) since it must

specify the actions of each active pair at each network.

The intuition of the example is simple. The two largest players, m and l, have a strong

enough insider exclusion incentive that they want to become insiders and remain so forever.

However, when either m or l is an insider with s then their insider exclusion incentive is weak

enough that the link monotonicity e�ect dominates and the complete network is attained via
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a hub�spoke network. With an endogenous order of link formation, m and l become insiders

immediately and remain so permanently. But, in the example, m and l are not prepared to

wait for the opportunity to be the active pair and so they immediately form a link with s if

the opportunity presents itself. As such, the complete network can obtain when the active

pair is random and does obtain if m and l are not the �rst active pair chosen.

For this example, I use the one period payo�s in Table 2. These payo�s satisfy link

monotonicity, negative link externalities and each pair of insiders has an insider exclusion

incentive. Moreover, the complete network is the e�cient network in the sense it delivers

the maximum aggregate payo�. Note that Example 2 showed the unique FDNE is that

m and l become insiders and remain so permanently. In proceeding, I assume the active

pair is randomly chosen from the set of links yet to form. Thus, for example, given the

insider�outsider network g = gij, the active pair, denoted η, is randomly selected from

{{i, k} , {j, k}}.
To begin the backward induction, consider any subgame at a hub-spoke network g = gHi .

Given link monotonicity, the equilibrium strategy pro�le µ∗ (g, η) must specify the spokes

form the �nal link that leads to the complete network.

Now roll back to subgames at insider�outsider networks g = gij remembering that any

hub�spoke network will expand to the complete network in the following period. First,

consider g = gml. Given Table 2, remaining insiders is strictly most preferred for m and l if

δ > max
{
δ̄NEl,m (θ) , δ̄NEm,l (θ)

}
. Using Table 2, δ̄NEl,m (θ) = 1

3
< δ̄NEm,l (θ) = 3

7
. Thus, let δ > 3

7
.

Given m and l's most preferred outcome is gml regardless of η, µ
∗ (g, η) must specify that m

and l refuse link formation when either is a member of an active pair at the insider�outsider

network g = gml. Then, by construction, there is no pro�table joint deviation by an active

pair nor a pro�table unilateral deviation by a member of an active pair at g = gml.

Second, consider the subgame at the insider�outsider network g = gij 6= gml. Suppose

δ < min
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
so that, conditional on being in the active pair, an insider prefers

becoming the hub rather than remaining an insider. Does an insider, say i, have an incentive

to delay link formation as a member of the active pair? The continuation payo� of link

formation is Vi
(〈
gHi
〉)

= vi
(
gHi
)

+ δ
1−δvi (g

c). Given Vi
(〈
gHi
〉)

> Vi
(〈
gHj
〉)
, delaying link

formation is not optimal if Vi
(〈
gHi
〉)
> vi (gij) + δVi

(〈
gHi
〉)

which holds when δ < δ̄NEi,j (θ).

Given Table 2, 1
2

= δ̄NEl,s (θ) < δ̄NEs,l (θ) < δ̄NEm,s (θ) < δ̄NEs,m (θ). So, given the above restriction

of δ > 3
7
, I now restrict attention to δ ∈

(
3
7
, 1
2

)
. Does the outsider have an incentive to delay

link formation? Given link monotonicity, the answer can only be yes if the outsider waits to

be in the active pair with a larger player. However, letting αi > αj, waiting is not optimal

for k if vk
(
gHj
)

+ δ
1−δvk (gc) > δ

(
vk
(
gHi
)

+ δ
1−δvk (gc)

)
which holds for k = m, l and j = s

given Table 2 and δ ∈
(
3
7
, 1
2

)
. Thus, µ∗ (g, η) must specify the players in the active pair at
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an insider�outsider network g = gij 6= gml form the link.

Finally, roll back to the empty network g = Ø. Given µ∗ (g, η), the insider�outsider

networks g = gsm and g = gsl will expand to the complete network via a hub�spoke network

(with equal probability of either insider becoming the hub) but the insider�outsider network

g = gml will remain forever. Indeed, becoming and remaining insiders forever is strictly most

preferred for m and l conditional on η = {m, l}. Thus, at the empty network g = Ø, µ∗ (g, η)

must specify that m and l become insiders if η = {m, l}. However, m (or l) faces a trade o�

when η = {s,m} (or η = {s, l}). Ideally, m (or l) wants to form a link with l (or m) but it

has to wait until η = {m, l} for that to happen. Waiting is not optimal for m if

vm (gsm) + δ

(
1

2
vm
(
gHm
)

+
1

2
vm
(
gHs
))

+
δ2

1− δ
vm (gc) > δV wait

m (3)

where, given vm (Ø) = 0, an upper bound on m's continuation payo� of waiting is

V wait
m ≡

[
1

3

1

1− δ
vm (gml) +

2

3
vm (Ø)

][
1 + δ

2

3
+ δ2

(
2

3

)2

+ ...

]

=

[
1

3

1

1− δ
vm (gml)

] [
1

1− 2
3
δ

]
.

Using Table 2 and δ ∈
(
3
7
, 1
2

)
, (3) holds. That is, if m is in the active pair with s then m

prefers to form the link with s rather than wait for the opportunity to form a link with l

even though forming the link with l would be the ideal outcome for m. Using Table 2 reveals

an analogous condition holds for l and thus l will also form the link with s when it has the

opportunity rather than wait to form the link with m.

Not only do the larger players m and l have a potential incentive to delay link formation

when either of them is in the active pair with s. s may also have an incentive to delay link

formation. But, given s's ideal outcome is to form a link with l, this can only be true when

η = {s,m}. Nevertheless, waiting cannot be optimal for s if

vs (gsm) + δ

(
1

2
vs
(
gHs
)

+
1

2
vs
(
gHm
))

+
δ2

1− δ
vs (gc) > δV wait

s (4)

where, given vs (Ø) = 0, an upper bound on s's continuation payo� of waiting is

V wait
s ≡

[
1

3

1

1− δ
vs (gml) +

1

3
Vsl +

1

3
vs (Ø)

][
1 + δ

1

3
+ δ2

(
1

3

)2

+ ...

]

=

[
1

3

1

1− δ
vs (gml) +

1

3
Vsl

] [
1

1− 1
3
δ

]
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and Vsl ≡ vs (gsl)+δ
(
1
2
vs
(
gHs
)

+ 1
2
vs
(
gHl
))

+ δ2

1−δvs (gc) is s's continuation payo� conditional

on being in the active pair with l. However, (4) holds given Table 2 and δ ∈
(
3
7
, 1
2

)
. Thus,

as a member of the active pair with m, s prefers to form the link with m rather than wait

for the opportunity to form the link with l even though link formation with l is the ideal

outcome for s. Hence, µ∗ (g, η) must specify that link formation occurs at the empty network

between members of the active pair when η = {s,m} or η = {s, l}.
Given µ∗ (g, η), what is the equilibrium path of networks? With a probability of 1

3
, gml

forms and remains forever. Additionally, each of the following four paths of networks arise

in equilibrium with a probability of 1
6
:
(
gsm, g

H
m , g

c
)
,
(
gsm, g

H
s , g

c
)
,
(
gsl, g

H
l , g

c
)
,
(
gsl, g

H
s , g

c
)
.

Thus, the complete network eventually obtains with a probability of 2
3
. Conversely, Example

2 showed the FDNE is gml. This shows how randomly selecting the active pair leads to

the prediction that the complete network will emerge yet endogenously determining the

opportunity for link formation predicts the complete network will not emerge.

6 Application to Free Trade Agreements

I now present a very simple model of international trade that has been used frequently in

the trade agreements literature and generates a payo� structure satisfying Conditions 1�3

and, except for a very small range of the parameter space, Assumption 1. To this end, a

bilateral link between countries i and j is interpreted as a Free Trade Agreement (FTA)

between countries i and j. According to WTO rules, FTA formation between countries i

and j imposes two requirements: i) removal of tari�s on trade between i and j and ii) i and

j do not raise tari�s on other countries. Thus, the complete network gc can be interpreted

as global free trade because all tari�s have been eliminated.

Before moving on, it is important to note that the trade agreements application �ts

nicely into the dynamic network formation model described above. First, many authors (e.g.

Ornelas (2008, p.218) and Ornelas and Liu (2012, p.13)) have argued the binding nature

of trade agreements is not only pervasive in the trade agreements literature but entirely

realistic. Second, international trade agreements typically take many years to form and

thus a period can reasonably be interpreted as the amount of time necessary to complete

negotiation of an agreement.18 Third, as discussed in the introduction, previously formed

agreements do not necessarily in�uence the sequential way that negotiations may commence

and/or breakdown within the current period. For example, consider US�Canada�Colombia

FTA negotiations. After the 1987 formation of the Canada�US FTA, Canada and the US

became insiders. Pre 2002, Colombia was the outsider but Canada began negotiations with

18For example, NAFTA was signed in 1992 despite negotiations dating back to 1986.
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Colombia in 2002. Even though US�Colombia negotiations did not begin until 2004, the US�

Colombia FTA was signed in 2006 prior to the 2008 signing of the Canada�Colombia FTA.

Thus, the trade agreements application �ts into a framework where links formed in previous

periods are binding but do not a�ect the way in which coalitions can break into subcoalitions

when the single FTA to be formed in the current period is still under negotiation.

The trade model is a three country oligopolistic intra industry model. Krishna (1998),

Ornelas (2005b, 2008), Goyal and Joshi (2006), Mukunoki and Tachi (2006) and Saggi and

Yildiz (2011) use slight variations of this. Apart from Goyal and Joshi (2006), all of these

models are three country models which is typical in the trade agreements literature. Indeed,

the dynamic farsighted models of trade agreement formation by Mukunoki and Tachi (2006)

and Seidmann (2009) are three country models.

N = {i, j, k} denotes the set of countries and a single �rm exists in each country. Given

the network of FTAs g, qij (g) denotes country i's exports to country j and qjj (g) denotes

the quantity produced by country j for its domestic market. Country j's inverse demand

function is Pj (g) = αj−Qj (g) where αj is a measure of country j's market size (the only form

of asymmetry) and Pj (g) and Qj (g) =
∑

i∈N qij (g) denote price and aggregate quantity in

country j. For simplicity, a common non prohibitive tari�, τji (g) = τ ≤ τ̄ , is implemented

by country j on country i if i and j do not have an FTA, i.e. ij /∈ g.19 Otherwise τji (g) = 0

and, naturally, τjj (g) = 0.

The common non prohibitive tari� removes the possibility of �tari� complementarity�.

Tari� complementarity is a common feature of trade agreements models (including the

oligopolistic model, e.g. Ornelas (2005a)) whereby FTA formation induces members to lower

their tari� on the non-member. Importantly, consideration of this e�ect can mean an FTA

leading to the insider�outsider network imposes a positive link externality rather than a neg-

ative link externality. Nevertheless, Conditions 1 and 3 allow for this possibility meaning the

general payo� speci�cation underlying Propositions 1 and 2 permit tari� complementarity.

Taking tari�s as given and assuming segmented international markets and a common

and constant marginal cost (normalized to zero) then, �rm i maximizes pro�ts in coun-

try j by solving the following optimization problem (which has the standard form of the

aforementioned papers):

max
qij

[(αj −Qj (g))− τji (g)] qij.

19τ̄ is the lowest tari� such that some �rm makes (weakly) negative pro�ts by exporting to some country
in some network structure. Given the optimal quantity formula q∗ij (g) below, the lower bound on q∗ij (g)

occurs for g = gjk. In this case q∗ij (g) = 1
4 [αj − 3τ ] and, thus, τ̄ = αs

3 where αs ≡ min {αi, αj , αk}. Note,
τ ∈

[
τ̄ , αs

2

]
ensures non negative pro�ts in the empty network so each �rm makes strictly positive pro�ts in

each market in the empty network when τ = τ̄ .
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Solving the �rst order conditions reveals the equilibrium quantity produced by country i and

sold in country j's market is

q∗ij (g) =
1

4
[αj + (3− ηj (g)) τ̄j (g)− 4τji (g)]

where τ̄j (g) is the tari� faced by countries who do not have a PTA with country j and ηj (g) is

the number of countries that face a zero tari� in country j (including country j itself). Note

that WTO rules stipulate a country cannot set tari�s that discriminate between non-members

(this is the most favored national principle) which implies τji (g) = τ̄j (g) for all i such that

ij /∈ g. Country i's equilibrium export pro�ts in country j are vij (g) =
(
q∗ij (g)

)2
and the total

pro�ts earned by country i from exporting and domestic production are vi (g) =
∑

j∈N vij (g).

The one period payo�s have simple closed form solutions. Letting α̃2 ≡
∑

i∈N α
2
i ,

country i's payo� in the empty network is vi (Ø) = 1
16

[α̃2 + 4ταi − 4τ (αj + αk) + 12τ 2]

and their payo� in the complete network is vi (g
c) = 1

16
α̃2. For g = gij, an insider's

payo�, say i, is vi (gij) = 1
16

[α̃2 + 2τ (αi + αj)− 4ταk + 6τ 2] and the outsider's payo� is

vk (gij) = 1
16

[α̃2 + 4ταk − 6τ (αi + αj) + 22τ 2]. At the hub�spoke network g = gHi , the

hub's payo� is vi
(
gHi
)

= 1
16

[α̃2 + 2τ (αj + αk) + 2τ 2], and a spoke's payo� is vk
(
gHi
)

=
1
16

[α̃2 + 2ταk − 6ταj + 10τ 2]. These payo�s yield signi�cant analytical tractability because

the di�erence between any pair of one period payo�s is independent of α̃2 and has a common

factor of τ .

It is easy to use these one period payo�s to check Conditions 1�3 and Assumption 1.

Conditions 1�2 follow immediately and, under the restriction αl < min {3αs − 5τ, 3αm − 6τ},
Condition 3 holds.20,21 Additionally, δ̄NEl,m (α) < δ̄NEm,l (α) < δ̄NEs,l (α) ensure parts ii) and iii)

of Assumption 1. However, a very minor additional restriction on the parameter space is

needed to ensure part i) of Assumption 1.22

Given the oligopolistic model of international trade satis�es Conditions 1�3 and Assump-

tion 1, then Propositions 1 and 2 characterize the equilibrium path of FTAs. In particular,

these propositions describe how the attainment of global free trade depends crucially on the

20Given q∗ij (g) and τ ≤ τ̄ , one can verify that the three country joint optimal tari� is zero and thus the
complete network is e�cient. To be clear, the restriction τ ≤ τ̄ together with the non�monotonicity of the

world pro�t function drive this result. Given vi (Ø, τ) = 1
16

[∑
j∈N (αj)

2
+ 4τ (αi − αj − αk) + 12τ2

]
, world

pro�ts are vW (Ø, τ) ≡ 1
16

[
3
∑
j∈N (αj)

2 − 4τ
∑
j∈N αj + 36τ2

]
which is non�monotonic in τ : ∂vW (Ø,τ)

∂τ
>
<0

when τ ><τ ≡
∑

j∈N αj

18 . Thus, vW (Ø, τ) is minimized at τ . Letting αs ≡ min {αi, αj , αk}, vW (Ø, 0) ≥
vW (Ø, τ̄) reduces to

∑
j∈N αj ≥ 3αs which is true by de�nition. Hence, vW (Ø, 0) ≥ vW (Ø, τ) for any

τ ≤ τ̄ .
21αl < 3αs − 5τ ensures vl (g

c) > vl
(
gHm
)
and αl < 3αm − 6τ ensures vl

(
gHm
)
> vl (gsm).

22When τ
αs

and αm

αs
are very low, the last preference ordering in part i) is violated when αl

αs
is very high.

In this cases, the FDNE becomes more tedious but the main results remain.
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insider exclusion incentive even if global free trade maximizes the aggregate payo� of the

governments.

7 Discussion

I now discuss how two important assumptions that helped maintain analytical tractability

of the model can be relaxed without a�ecting the key insights of the model.

First, I assumed that at most one link could form in any given period. This ruled out a

direct move to the complete network from the empty and insider�outsider networks and also

a direct move to the hub�spoke network from the empty network. Would the importance of

the insider exclusion incentive and the related result that the FDNE is merely a permanent

insider�outsider network diminish if such moves were possible?

It is straightforward to show the answer is no when allowing a direct move to the complete

network in any period. The basic intuition is as follows. Suppose the action space is expanded

to include an announcement c indicating a player announces a move to the complete network

and that such a move takes place if and only if all players announce c.23 Further, suppose

the No Exclusion condition holds for a pair of insiders in an insider�outsider network and

becoming insiders is strictly most preferred for each insider in the empty network so that the

unique FDNE is that these players become and permanently remain insiders. Despite the

announcement c, remaining insiders at the insider�outsider network and becoming insiders at

the empty network is still strictly most preferred for each such insider. Thus, an appropriate

extension of Lemma 1 establishes that the FDNE remains unchanged.

The answer is also no when allowing a direct move to the hub�spoke network from

the empty network. The permanence of an insider�outsider network as an FDNE arises

when δ > max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
. However, given a pair of insiders, say m and l, each

insider prefers remaining an insider forever rather than moving directly to the hub�spoke

if and only if 1
1−δvi (gml) > vi

(
gHi
)

+ δ
1−δvi (g

c) for i = m, l which holds if and only if

δ > max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
. Thus, the importance of the insider exclusion incentive and

the possibility of an FDNE not leading to the complete network does not depend on the

assumption that at most one link can form in any given period.

A second important assumption of the model is there are only three players. Indeed,

using an evolutionary game theoretic model, Zhang et al. (2014) have recently showed that

whether the complete network obtains can hinge on whether there are exactly three players.

23Adding the announcement c to the action space means the action space for player i at the empty network
is Ai (Ø) = {φ, j, k, c}. This is e�ectively equivalent to allowing each player to announce multiple links in a
given period, i.e Ai (Ø) = {φ, j, k, {j, k}}, if it is also assumed that refusal by any player to participate in a
proposed link vetoes all proposed links.
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To see this is not the case in my model, consider a model with four symmetric players

i, j, k, l. Moreover, assume each player can only form one link per period but multiple

links can form in a given period. Consider an �insider�outsider� network g1 = (ij, kl) and

assume that link monotonicity holds so that the �hub�spoke� network g2 = (ij, kl, ik, jl)

will expand to the complete network in the following period.24 Then, given the network

g1, i prefers to maintain the status quo g1 permanently rather than form a link with k if
1

1−δvi (g1) > vi (g2) + δ
1−δvi (g

c) which is analogous to violation of the earlier No Exclusion

condition. Indeed, imposing vi (g1) > vi (g
c) would be analogous to the insider exclusion

incentive earlier. Thus, even in a four player model, a type of No Exclusion condition and

insider exclusion incentive will still drive whether the complete network obtains.

8 Conclusion

It is well known that the equilibrium of sequential move games can be very sensitive to

the protocol governing which players can act when (e.g. Ray and Vohra (1997), Jackson

(2008)). In the context of dynamic network formation games, the protocol governs which

pair of players have an opportunity to form a link in any given period. I develop a three

player dynamic network formation model where players are farsighted and the identity of the

players who form a link in any given period depends endogenously on player characteristics.

I do this by embedding a simultaneous move announcement game in each period of the

dynamic game where each player announces who it wants to form a link with. In doing so,

I de�ne a new equilibrium concept called Farsighted Dynamic Network Equilibrium.

Of course, endogenizing which players form a link in a given period is not necessarily

important in and of itself. However, I show that it can lead to substantively di�erent predic-

tions regarding the equilibrium path of network formation and, in particular, attainment of

the complete network relative to models with an exogenous protocol. This di�erence arises

even if link formation is always myopically attractive and the complete network is e�cient.

Speci�cally, the presence of an insider exclusion incentive can mean the complete network

fails to obtain when the identity of which players form a link in a given period is endogenous.

In this case, the �most attractive� players become insiders and remain so forever. However,

when the pair of players who have the opportunity to form a link in a given period is ran-

domly chosen, the chosen players may not want to wait for their ideal partner but instead

take the link formation opportunity currently available. This has signi�cant implications

24g1 is a type of insider�outsider network in the sense that (for example) i and j are insiders with respect
to each other but outsiders with respect to j and k. g2 is a hub�spoke network in the sense that (for example)
i is a hub between j and k which makes j and k spokes with respect to i.
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for the equilibrium path of network formation because, when players are asymmetric, which

players become insiders a�ects the strength of the insider exclusion incentive and hence

whether an insider�outsider network eventually leads to the complete network. Thus, en-

dogenizing which players form a link in a given period substantively a�ects the equilibrium

path of network formation.

Extending a framework that endogenizes which players form a link in a given period

beyond a model of three players remains an avenue for future research. On the surface,

the analytical tractability of the three player model relied on the complete network being

obtained in at most three periods. However, the complete network can also be obtained

in three periods with four players if the one link per period assumption is relaxed so that

each player can form one link per period. As discussed in Section 7, the idea of an insider

exclusion incentive can still drive the equilibrium path of network formation in a model with

four players. This observation provides motivation and hope for extension to a setting with

many players.

Appendix

A Proofs

Proof of Lemma 2

Note, for any hub�spoke network g = gHi , G (N, g) = gc by link monotonicity and Lemma

1.

Let δ > δ̄NE (θ). Then, 〈gij〉 = gij is strictly most preferred for i and j. Thus, by Lemma

1, gij = G (N, gij).

Now let δ < δ̄NE (θ). Lemma 1 implies gHi ∈ G (N, gij) and g
H
j ∈ G (N, gij) because g

H
i is

most preferred for i and k while gHj is most preferred for j and k. Moreover, gij /∈ G (N, gij)

given S = ik have a self enforcing deviation from gij to g
H
i ∈ G (Pik, gij). g

H
i ∈ G (Pik, gij)

follows given gHi is most preferred for i and k. Hence, G (N, gij) =
{
gHi , g

H
j

}
.�

Proof of Proposition 1

The proof proceeds by backward induction. Consider the subgame at a hub�spoke net-

work g = gHi . Given link monotonicity, Lemma 1 implies G
(
N, gHi

)
= gc. Now consider

the subgame at an insider�outsider network g = gij. By Lemma 2, G (N, gij) =
{
gHi , g

H
j

}
if

δ < δ̄NE (θ) and G (N, gij) = gij if δ > δ̄NE (θ).

Finally, consider the subgame at the empty network g = Ø. Suppose δ > δ̄NE (θ). Given

gij is most preferred for any i, j ∈ N , two observations establish the proof. First, Lemma

1 implies G (N,Ø) ⊇ ΩI−O where ΩI−O ≡ {gij, gik, gjk}. Second, gij ∈ G (Pij,Ø) and thus
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the self enforcing deviation by S = ij from Ø to gij ∈ G (Pij,Ø) implies Ø /∈ G (N,Ø).

Therefore, G (N,Ø) = ΩI−O and, given G (N, gij) = gij, the set of FDNE is ΩI−O.

Now suppose δ < δ̄NE (θ). Thus, for any g ∈ ΩI−O, Lemma 2 implies gc eventually obtains

via a hub�spoke network. Without loss of generality, suppose each country is the hub on

one such path. Given Conditions 1 and 2,
(
gij, g

H
i , g

c
)
�i
(
gij, g

H
j , g

c
)
�i
(
gjk, g

H
j , g

c
)
and(

gij, g
H
j , g

c
)
�i 〈Ø〉. Thus, Lemma 3 applies and says the EBA networks are ∪

S⊂N
G (PS,Ø) =

ΩI−O. In turn, the set of FDNE is any path of bilateral links leading to gc.�

Proof of Lemma 4

Note, for any hub�spoke network g = gHi , G (N, g) = gc by link monotonicity and Lemma

1. Throughout the proof let αi > αj.

If δ > max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
, (2) and Condition 3 imply gij is strictly most preferred

for i and j. Thus, by Lemma 1, gij = G (N, gij).

If δ < δ̄NEi,j (θ), (2) and Condition 3 imply gHi is strictly most preferred for i and k. Thus,

by Lemma 1, gHi = G (N, gij).

Now consider the �nal case where δ ∈
[
δ̄NEi,j (θ) , δ̄NEj,i (θ)

)
noting that γ (P ∗, gij) ⊇{

gij, g
H
j

}
and γ (P ∗, gij) = gHj if aj (gij) = k or ak (gij) = j. Four observations establish

the proof. First, gHj ∈ G (Pjk, gij) because i) gHj ∈ γ (Pjk, gij), ii) g
H
j is most preferred for

j, and iii) gij ∈ γ (P ∗, gij) deters k's to ak (gij) = i. Second, gHj /∈ G (Pik, gij) because〈
gHi
〉
�ik

〈
gHj
〉
. Third, gHi ∈ G (Pik, gij) because i) g

H
i ∈ γ (Pik, gij), ii) g

H
i is strictly most

preferred by k, and iii) gHj ∈ γ (P ∗, gij) deters any deviation by i. Fourth, gij /∈ G (PS, gij)

for any S ⊂ N : j (or k) has a self enforcing deviation to aj (gij) = k (or ak (gij) = j) and

gHj = γ (P ∗, gij).

The �rst observation implies gij /∈ G (N, gij): S = jk have a self enforcing deviation to

gHj ∈ G (Pjk, gij). The third observation implies gHj /∈ G (N, gij): S = ik have a self enforcing

deviation to gHi ∈ G (Pik, gij). To establish G (N, gij) = gHi , note that the potentially

pro�table deviations from gHi are i) j to gHj and ii) i and/or j to gij. However, these

respective deviations are not self enforcing because of, respectively, observations i) two and

ii) one and four. �

Proof of Proposition 2

The proof proceeds by backward induction. Consider the subgame at a hub�spoke net-

work g = gHi . By link monotonicity and Lemma 1, G
(
N, gHi

)
= gc. Now consider the sub-

game at an insider�outsider network g = gij. Let αi > αj. For δ > max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
,

Lemma 4 implies gij = G (N, gij). For δ < max
{
δ̄NEi,j (θ) , δ̄NEj,i (θ)

}
, Lemma 4 implies

G (N, gij) = gHi .

For later purposes note that δ < max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
implies not only gHl ∈ G (N, gml)

but also gHl ∈ G (N, gsl) and, unless δ̄
NE
m,l (θ) < δ̄NEl,m (θ), gHm ∈ G (N, gsm). The latter follows
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because Condition 3 implies δ̄NEm,l (θ) < δ̄NEm,s (θ). The former follows because, using Condition

3, either i) δ < δ̄NEl,s (θ) or ii) δ ∈
(
δ̄NEl,s (θ) , δ̄NEm,s (θ)

)
which, via part ii) of Assumption 1,

implies δ < δ̄NEm,l (θ) < δ̄NEs,l (θ).

Now consider the subgame at the empty network g = Ø. First, let δ > max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
.

Condition 3 implies gml is strictly most preferred for m and l regardless of G (N, gsm) and

G (N, gsl). Hence, Lemma 1 implies gml = G (N,Ø) and thus gml is the unique FDNE.

Second, let δ < max
{
δ̄NEm,l (θ) , δ̄NEl,m (θ)

}
. Suppose Condition 4 holds. For δ < δ̄m (θ),

Condition 3 implies gml is strictly most preferred for m and l. So Lemma 1 implies gml =

G (N,Ø) and
(
gml, g

H
l , g

c
)
is the unique FDNE. For δ > δ̄m (θ), the conditions of Lemma

3 are satis�ed given Condition 3 and part i) of Assumption 1. Hence, ΩI−O are the EBA

networks and thus Ω̂c are the FDNE. Now suppose Condition 3 fails. Given Condition 3

implies δ̄NEm,l (θ) < δ̄NEm,s (θ) then δ̄NEm,l (θ) < δ̄NEl,m (θ) must hold. Thus, part iii) of Assumption

1 implies 〈gsm〉 = gsm is strictly most preferred for s and m when δ > δ̄m (θ) and Condition

4 fails. Hence, Lemma 1 implies gsm = G (N,Ø) and, in turn, gsm is the unique FDNE.�
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