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Abstract

We examine a dynamic model of teamwork in which the public attributes
credit for success based on its perception of individual efforts. The collabora-
tive behavior varies starkly depending on the shape of marginal effort cost, or
project’s “difficulty.” In the unique (interior) equilibrium, higher ability collab-
orators work less and thus receive lower credit and payoff for “easy” projects,
while the reverse holds for “difficult” projects. Despite free-riding, the team equi-
librium may involve over-investment. Social efficiency requires over-rewarding
collaborative work and under-rewarding solo work. The incentives to team up
and the impact of effort monitoring on credit attribution are also investigated.
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1 Introduction

Credit for scientific discovery is vital for the reward system, and hence, the progress
of science. According to Flier (2019), “absent credit, it is impossible [for scientists] to
secure appointments, promotions, research funding, access to students, and other ne-
cessities of research.” Essential to credit attribution is the inference of individual con-
tributions to knowledge production. This inference, however, has been complicated
by the steady rise in collaborative work across disciplines.1 While various conven-
tions such as authorship order have developed to overcome this complication, public
perception of each collaborator’s contribution remains crucial in assigning credit.2

Individual recognition for collaborative success is not specific to scientific teams.
In business, managers pay discretionary bonuses to their subordinates for reaching
company goals (Rajan and Reichelstein, 2006). In politics, voters reward or punish
parties in a coalition differently for policy outcomes (Marsh and Tilley, 2010). And
in education, teachers assign individualized grades on group projects (Zhang and
Ohland, 2009).

The issue of credit attribution in teamwork raises some obvious positive and nor-
mative questions. Do higher ability (or more productive) team members always de-
serve more credit for collaborative success? Do team members always underinvest in
the joint project due to free-riding? How should society reward collaborative work?
How about solo work? Does credit assignment by the public encourage or discourage
collaboration? And, do team members favor public monitoring of their activities for
proper credit?

To address these and related questions, we present a dynamic model of teamwork
building on Lee and Wilde’s (1980) seminal paper on R&D races; see Reinganum
(1989) for a review of this literature. We envision that instead of working indepen-
dently, agents work as a team toward a breakthrough, e.g., a scientific discovery.

1Based on all the articles registered from 1980 to 2013 in the Social Science Citation Index (SSCI),
Henriksen (2016) documents a significant increase in co-authorship with the average number of au-
thors per article in economics rising from 1.3 to 2.3 over the period. Wuchty et al. (2007) report that
in the natural sciences, team size has grown each year and nearly doubled from 1.9 to 3.5 authors per
article between 1955 and 2000.

2As Flier (2019) convincingly argues, it is often difficult to assign credit given the current authorship
practices since “broadly accepted conventions that specify the meaning of authorship as regards to
type and extent of contributions by each author are lacking.” Authorship conventions range from
alphabetical (mathematics, economics), to descending importance (biology, high energy physics), to
listing the lead author first and the principal investigator last (chemistry, psychology); see Shen and
Barabási (2014). Recently the American Economic Association (AEA) has started permitting random
order of coauthors (Ray r© Robson, 2018).
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Agents have heterogenous abilities, where higher ability implies lower effort cost.
To isolate from career concerns, we assume abilities to be publicly known, perhaps,
because of agents’ past achievements. Our main departure from the teamwork litera-
ture (discussed below) is that the sharing rule for the team’s output is not exogenous;
rather, it is determined by the public’s perception in equilibrium. Specifically, unable
to observe individual efforts but conjecturing them, the Bayesian public, e.g., the sci-
entific community, attributes the breakthrough to an agent with a probability equal to
his effort relative to the team’s total.3 We call this probability the agent’s “credit” for
collaborative success. In equilibrium, the team’s effort profile and the public’s credit
allocation must be consistent.

We focus on the interior equilibrium in which all team members are active, and
show that one generically exists.4 Our analysis reveals that an agent’s equilibrium
behavior is driven by his “perception” of the project’s difficulty. This perception de-
pends on the discount rate, the anticipation of teammates’ efforts, and the project’s
intrinsic cost of effort. For a wide range of projects, the project’s intrinsic technology
dominates the agents’ perceptions. We refer to a project as “intrinsically easy” if the
intrinsic marginal cost of effort is concave, and “intrinsically difficult” if that marginal
cost is sufficiently convex. For moderately convex marginal cost, we refer to a project
as “non-intrinsic” since the agents’ perceptions can vary, depending on what each
expects of teammates and on the discount rate.

Central to our investigation are the intrinsic projects, since they admit a unique
interior equilibrium, and more importantly, agents’ behaviors and credits strikingly
differ across them. For an intrinsically easy (resp. difficult) project, the higher ability
agent works less (resp. more) and, as a result, receives less (resp. more) credit in
equilibrium. If he were to receive more credit for an intrinsically easy project, the
higher ability agent would work disproportionately harder than the credit allocation,
which would be inconsistent with the public’s perception. Thus, the higher ability
agent must be under-rewarded in equilibrium. Under-rewarding does not arise in
an intrinsically difficult project because, by definition, the marginal cost of effort is
too steep to expend disproportionate effort. Agents also fare very differently across
intrinsic projects. In equilibrium, the higher ability agent is worse off (resp. better off)
than his lower ability teammates under an intrinsically easy (resp. difficult) project.
By working harder, an agent improves his equilibrium credit but also incurs a greater
effort cost. Our result indicates that the more diligent, not necessarily more able,
agent fares better in teamwork.

3We use the male pronoun for team members and the female pronoun for the social planner later.
4An inactive agent can effectively be removed from the team in our model.

2



These insights from intrinsic projects extend to non-intrinsic ones in that the agents
may have mixed perceptions in the latter. As such, there may be multiple interior
equilibria, and the equilibrium credit allocation and payoffs can be non-monotonic in
ability. In particular, we numerically illustrate that in a three-member team, it may
be the medium-ability member who works the hardest and receives both the highest
credit and payoff in equilibrium.

Our next set of results focus on inefficiencies that arise from credit attribution,
regardless of agents’ perceptions of the project. Free riding, a well-known feature of
teamwork, often leads to under-investment. Our model also delivers under-investment
when team members are identical and thus expect equal credit for success. For a sig-
nificant ability gap, however, over-investment by some member is possible. This
inefficiency is obvious for an intrinsically easy project: contrary to desired socially,
the low ability agent expends more effort in this case. Consider, thus, two highly het-
erogeneous agents in an intrinsically difficult project. Anticipating most of the credit,
the high ability agent would perform virtually solo in equilibrium. Such a work allo-
cation, however, would be too unequal from the social viewpoint: by shifting some
work to the low ability agent, the team’s payoff could improve.

We also determine the optimal credit profile that would correct for these inefficien-
cies. As can be expected in light of Holmstrom (1982), efficiency requires “budget-
breaking”: the total optimal credit for team members must exceed one. What is sur-
prising in our setting is that teamwork must be substantially over-rewarded. Each
team member must be offered more than the full credit for the team’s success. This is
because, by marginally increasing his effort, an agent not only speeds up the break-
through, but also saves the future costs of his teammates. In fact, since he is asked
to work harder than teammates at the social optimum and thus, his cost savings for
others are smaller, the optimal credit for a higher ability agent must be lower.

The optimal over-rewarding of teamwork suggests that when able to choose be-
tween team- and solo work, agents should have incentives to team up. To establish
these incentives, we examine a complementary setting in which agents work solo and
compete for the breakthrough, as in a typical R&D race. We show that, while rational,
assigning the winner full credit for solo success is too generous from the social view-
point. Put differently, it is socially optimal to under-reward solo work. This stark
contrast with teamwork is explained by the competitive pressure that over-motivates
agents in a race to success. Faced with the optimal credit schemes, the agents would
have a strict incentive to team up.5

5Also important in this observation is the fact that the socially optimal effort allocation is the same
across team and solo work settings, which we formally establish in the analysis. Hence, the credit –
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Incentives to form a team can also arise under the equilibrium credit attribution
by the public: sufficiently patient agents who are also similar in ability prefer to work
together to avoid costly competition. Interestingly, this finding implies that a high
ability agent can team up with a low ability agent on an intrinsically easy project,
despite anticipating a lower credit and payoff from its completion than his teammate.

Last, but not least, we investigate how public monitoring of individual efforts may
impact credit attribution.6 We show that with observable efforts, teamwork is strate-
gically equivalent to solo work for the agents, as they now compete for credit. Our
previous findings thus indicate that with public monitoring, the higher ability agent
always works harder and deserves more credit, but he may dislike observability due
to the implied competition.

Related Literature. Aside from those mentioned above, our paper is related to
three strands of the literature on team incentives. The first strand examines contracts
that elicit efficient actions in teams. These contracts often feature nonlinear sharing
rules and large penalties for (potential) deviators; e.g., Holmstrom (1982), Rasmusen
(1987), Legros and Matthews (1993) and Winter (2004). Our optimal credit profile also
elicits efficient actions but, given our main interest in scientific credit, it is restricted to
be a simple, linear contract without penalties. The second strand fixes the sharing rule
and views teamwork as voluntary contributions to a public good; e.g., Olson (1965)
and Andreoni (1988). These papers employ static models and identify free riding
among team members. Building on this insight, the third – and more recent – strand
of the literature views teamwork as dynamic public good provision. It characterizes
non-stationary team dynamics when agents aim to reach a pre-specified project scale
(e.g., Admati and Perry, 1991; Yildirim, 2006; Georgiadis, 2015; Bowen et al. 2019)
or they learn about the project’s potential (e.g., Bonatti and Horner, 2011; Cetemen et
al. 2019). As in Lee and Wilde (1980), our model exhibits stationary strategies. Most
importantly, we endogenize the sharing rule as an equilibrium credit allocation by the
public.7 As such, unlike in these studies, equilibrium effort can be non-monotonic in
ability, and over-investment by both high and low ability agents can occur in our
model.

The scant theoretical work on credit attribution in economics has mostly focused
on authorship order as a mechanism to signal relative contributions. Engers et al.

not the cost of effort – is what matters for an agent’s payoff comparison.
6In practice, such monitoring is not uncommon. In academia, researchers often discuss their ongo-

ing projects with their colleagues, and in business, managers can track employees’ work hours.
7With few exceptions such as Bowen et al. (2019) and Cetemen et al. (2019), dynamic teamwork

models assume symmetric agents and focus on symmetric equilibrium, so credit allocation would also
be trivial.
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(1999) show that the alphabetical order may emerge as the unique equilibrium, as
any deviation from it hurts the author with the early name in the alphabet more than
it benefits the other. Also in a model with two co-authors, Ray r© Robson (2018) show
that a certified random order is fairer, distributes credit evenly on the alphabet and
will invade an environment in which alphabetical order is dominant. While these
insights are valuable and empirically relevant (Einav and Yariv, 2006), authorship
order can only provide a noisy signal of individual contributions. With more than
two authors, this signal can be even noisier, as evident from the lack of consensus
on a name-order convention across disciplines and the reliance on peer reviews in
tenure/promotion decisions.8 Therefore, in our model the public infers relative con-
tributions of an arbitrary number of collaborators using no other information than
the commonly known and heterogeneous abilities.

Another set of papers focus on the incentives of scientists to invite collaboration
when they have full ownership rights on projects. Motivated by the structure of sci-
entific labs, Gans and Murray (2013) show that a senior scientist’s decision to co-
author with a junior one depends on whether their efforts are complements and the
exact timing of the co-authoring decision. In Bikard et al. (2015), collaborative work
increases the quality of research but lowers individual rewards due to credit attribu-
tion, which is modeled as an exogenous function that only depends on the number
of collaborators. In particular, credit does not depend on the public perception of the
relative efforts and identities of the collaborators.9

The paper is organized as follows. Section 2 describes the model. Sections 3.1
and 3.2 describe the social optimum and the team equilibrium, respectively. Section
4.1 illustrates the exogenous (non-Bayesian) credit profile that would implement the
socially optimal efforts in equilibrium. Section 4.2 shows that some team members
may overinvest if the team is sufficiently heterogenous. Section 5 analyzes solo work
and incentives to form a team. Section 6 considers credit attribution with observable
efforts. Section 7 concludes. The Appendix contains the proofs and the technical
details omitted from the main text.

8The proposals for credit allocation have come a long way from assigning full or equal fractional
credit to each co-author to unequal schemes such as arithmetic, geometric and harmonic counting; see
Kim and Kim (2015) for a review. Yet, there is always a gap between peer perception and the credit
allocated by the specific scheme (Wren et al. 2007). Kim and Kim (2015) quantify this gap by using
credit allocations from surveys in chemistry, biomedicine, economics, marketing, and psychology.

9While our model and focus are very different, credit attribution by the public is conceptually sim-
ilar to blame-sharing in groups for unpopular decisions; see, e.g., Bartling et al. (2015) and Falk and
Szech (2017) for experimental evidence and Name-Correa and Yildirim (Forthcoming) for a theoretical
analysis.
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2 Model

Our model is a simple adaptation of Lee and Wilde’s (1980) on R&D races. Rather
than competing toward a single breakthrough, e.g., a scientific discovery, a team of
n > 1 risk-neutral agents indexed by i = 1, ..., n undertakes a joint project toward
it. They continuously and independently choose their efforts over an infinite time
horizon, t ∈ [0, ∞). Let xi(t) ∈ [0, ∞) be agent i’s instantaneous effort at time t, which
is unobservable to others. The flow cost of effort is given by

ci(xi(t)) =
c(xi(t))

ai
, (1)

where ai > 0, c′ > 0, c′′ > 0, and c(0) = c′(0) = 0.
We refer to the parameter ai as agent i’s “ability” and assume that it is publicly

known, perhaps due to his track record, ruling out any reputational concern for the
agent. And we refer to the function c(.) as the project’s “intrinsic” cost technology,
which signifies its intrinsic level of difficulty. For expositional convenience, we adopt
the following iso-elastic form for c(.) in the text:10

c(x) =
xk

k
, k > 1. (2)

As in Lee and Wilde (1980), we assume no knowledge accumulation and that
agent i’s instantaneous probability of a breakthrough at time t is also his effort, xi(t).11

Without loss of generality, we can, therefore, drop the time index and focus on sta-
tionary strategies, xi, throughout. Such stationarity implies that agent i’s random
time for the breakthrough, denoted by Ti ∈ [0, ∞), is exponentially distributed with
rate xi.12 Consequently, the team’s random time for completing the project, which

10In the proofs of the formal results, we offer general cost conditions all of which are satisfied by the
iso-elastic specification. Besides its expositional ease, we have adopted this specification in the text for
its wide use in the continuous-time teamwork studies; e.g., Bonatti and Horner (2011) and Georgiadis
(2015).

11The assumption of no knowledge accumulation is obviously unrealistic, but it greatly simplifies
our analysis and appears reasonable for highly innovative projects. The linearity of the discovery
rate is, however, without loss of generality. We could assume it to be some increasing and concave
function R(xi). Then, by a change of variables: xi := R−1(xi), it is evident that the nonlinearity in the
rate would be absorbed by the project’s intrinsic technology, c(.). By a change of variables: xi := xi/ai,
it is also evident that our model is robust to an alternative specification of the discovery rate: aixi.

12The exponential arrival time is assumed by Lee and Wilde (1980), but it need not be. Without
knowledge accumulation, agent i’s discovery follows a Poisson process, with the rate of xi(t). More-
over, given the stationarity, the process is homogenous, with exponential interarrival times. The sta-
tionarity also implies that it is immaterial whether or not agents commit to their effort strategies in our
model; see Reinganum (1982) for a similar observation.
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is mini Ti, is exponentially distributed with rate X = ∑i xi. Let ωt ∈ {0, 1} be the
state of the project at time t, with ωt = 1 representing its completion. The value of a
completed project is normalized to one while an incomplete project is worth nothing.
Agents discount the future benefit and costs at a common rate r > 0.

We depart from the existing literature on team incentives (discussed above) and
consider an endogenous allocation of the reward based on the public’s belief as to
who is responsible for success.13 Specifically, unable to observe the individual efforts
of the team members but conjecturing their profile x = (x1, ..., xn), the Bayesian public
would credit the breakthrough at time t to agent i with the probability:

qi = Pr(Ti = min
j

Tj|ωt = 1) =
xi

X
. (3)

Hence, if the breakthrough occurs, agent i receives the following expected reward:14

qi(1) + (1− qi)(0) = qi.

To derive his expected discounted payoff, note that given the exponential arrival time,
the probability of no breakthrough until time t is e−Xt. In the next instant dt, agent
i incurs his flow cost ci(xi)dt and receives his reward qi if the team succeeds with
probability Xdt. If the team fails, the game is reset to t = 0. As a result, agent i’s
expected discounted payoff at any time without a breakthrough is

ui =
∫ ∞

0
e−rte−Xt (Xqi − ci(xi)) dt (4)

=
X

r + X
qi −

ci(xi)

r + X
.

(4) is, perhaps, best interpreted if the discount rate r is viewed as the nature’s fixed
flow effort to “steal” the discovery. Then, given the exponential rates, the term X/(r+
X) becomes the team’s probability of winning against the nature, in which case agent
i receives the reward qi. Furthermore, with this interpretation, the term 1/(r + X)

corresponds to the expected length of time that the agent expends effort and explains
his expected cost in (4).

3 Analysis

We begin our analysis by establishing the social optimum and then turn our attention
to the team equilibrium.

13We assume that communication between a team member and the public about the breakthrough
is either infeasible or noncredible, as each member would claim responsibility for it.

14Given risk-neutral agents, the credit qi can also be interpreted as i’s share from the unit surplus.
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3.1 Social optimum

Suppose that a social planner chooses agents’ efforts to maximize their expected joint
payoff or welfare: W = ∑i ui. Using (4) and the fact that ∑i qi = 1 from (3), it readily
follows that the welfare is

W(x; r, a) ≡ X
r + X

−
∑j cj(xj)

r + X
, (5)

where the first term on the right-hand side represents the team’s expected total benefit
and the second term represents its expected total flow cost.

Accordingly, the planner solves

max
x

W(x; r, a). (SO)

Let the effort profile xS be a solution to (SO), resulting in the individual credit qS
i =

xS
i /XS and the expected payoff uS

i for agent i. Lemma 1 establishes the intuitive
properties of the social optimum.

Lemma 1 There is a unique solution, xS, to (SO). At the social optimum,

(a) every agent exerts positive effort: xS
i > 0 for all i,

(b) the higher ability agent works harder and thus receives more credit for the success: xS
i >

xS
j and qS

i > qS
j for ai > aj,

(c) the higher ability agent obtains a higher payoff: uS
i > uS

j for ai > aj.

To understand Lemma 1, we write the marginal impact of agent i’s effort from (5):

∂

∂xi
W(x; r, a) =

r + ∑j cj(xj)

(r + X)2 −
c′i(xi)

r + X
. (6)

It is evident from the first term on the right-hand side of (6) that, by bringing forward
the breakthrough date, a marginal increase in agent i’s flow effort contributes to wel-
fare both directly through success and indirectly through future cost savings to the
team. The planner trades off these benefits against the expected increase in agent i’s
flow cost, as reflected in the second term. Since the marginal cost of a small effort is
assumed to be negligible, i.e., c′i(0) = 0, (6) implies that the optimal effort must be
positive for every team member. Moreover, at the optimum, the first-order condition,
namely ∂

∂xi
W(x; r, a) = 0, requires that

c′i(xi) =
r + ∑j cj(xj)

r + X
. (7)
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Clearly, the right-hand side of (7) is the same across agents. Hence, as one would pre-
dict, the planner chooses the optimal efforts to equalize marginal costs across team
members. This also explains why a higher ability member is asked to work harder.
Such hard work implies more credit for the higher ability agent upon success, al-
though it is obvious from (5) that being able to dictate their efforts at the social op-
timum, the planner is neutral to the credit distribution among the agents. Finally,
despite a higher cost of effort, the social optimum allocates a greater expected pay-
off to a more able agent. These intuitive observations from Lemma 1 are useful to
understand team incentives, which we turn to next.

3.2 Team Equilibrium

In teamwork, efforts are independently chosen and unobservable to others, including
the public. Thus, taking as given the public’s belief qi and the total effort X−i =

∑j 6=i xj by teammates, agent i chooses his flow effort xi to maximize his expected
utility in (4). That is, agent i solves

max
xi

ui =
X

r + X
qi −

ci(xi)

r + X
. (8)

The first-order condition of (8) equates the expected marginal benefit to the expected
marginal cost:15

r
(r + X)2 qi︸ ︷︷ ︸

=MBi

=
c′i(xi)(r + X)− ci(xi)

(r + X)2︸ ︷︷ ︸
=MCi

. (9)

In (Nash) equilibrium, both the agents’ and the public’s beliefs must be correct. In
particular, the public’s credit allocation to team members must be consistent with (3).
Therefore, substituting for qi = xi/X, the equilibrium effort profile x∗ = (x∗1 , ..., x∗n)
is the solution to (9) for i = 1, ..., n, resulting in the equilibrium credit allocation:
q∗ = (q∗1 , ..., q∗n).

Before characterizing the equilibrium, we note a trivial multiplicity: if an agent
expects no credit from the public for a successful project, i.e., q∗i = 0, then (9) implies
that he will exert no effort, x∗i = 0, which will, in turn, confirm the public’s belief.16

Since an inactive agent receives an expected payoff of zero by (4), he can essentially
be removed from the team, perhaps, by requiring a small participation cost. Hence, in

15The second-order condition is easily verified.
16Note, however, that x∗i > 0 for some i because c′i(0) = ci(0) = 0 and r > 0. Hence, X∗ > 0.
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what follows we focus on the interior equilibria at which all team members are active;
i.e., x∗i > 0 for all i.

To better understand agent i’s equilibrium behavior, we divide both sides of (9)
by qi = xi/X and re-write it in terms of the credit-adjusted marginal benefit and
marginal cost:

r
(r + X)2︸ ︷︷ ︸
=mb(X,r)

=

(
c′i(xi)(r + X)− ci(xi)

xi

)
X

(r + X)2︸ ︷︷ ︸
=mci(xi,X,r)

. (10)

Evidently, the credit-adjusted marginal benefit, mb(X, r), is equal across team
members since, besides discounting, the breakthrough rate depends only on the ag-
gregate effort, X. The credit-adjusted marginal cost, mci(xi, X, r), is, however, more
involved, and its properties play a key role in our equilibrium characterization. In
particular, central to agent i’s equilibrium behavior turns out to be his “perception”
of the project, which we define based on whether mci is decreasing or increasing in
xi.

Definition 1 (easy vs. difficult projects) Agent i is said to perceive the project as “easy”
if ∂mci(x∗i , X∗, r)/∂xi < 0, and “difficult” if ∂mci(x∗i , X∗, r)/∂xi > 0. Moreover, agent i is
said to perceive the project as “intrinsically easy” if ∂mci(xi, X, r)/∂xi < 0, and “intrinsi-
cally difficult” if ∂mci(xi, X, r)/∂xi > 0 for all xi, X−i, r.

In words, an agent views the project as “easy” or “difficult” if his credit-adjusted
marginal cost is strictly decreasing or strictly increasing in his own effort, respectively.
Two remarks are in order here. First, an agent’s perception of the project is defined
by fixing the aggregate effort, X, which includes his own. This approach is more
convenient in the analysis because agents in our setting play an “aggregative game”
in that agent i cares about his teammates’ efforts to the extent of their sum, X−i. And
because of this feature, aggregative games have received much attention in various
literatures in economics; see Acemoglu and Jensen (2013) and the references therein.

Second, an agent’s perception of the project is defined as an equilibrium object
because it is likely to be influenced by his anticipation of the team’s total effort. As
(10) implies, however, the agent’s perception is also influenced by the project’s tech-
nology, c(.), signifying its intrinsic difficulty, and by the discount rate, r, signifying
its urgency for completion.17 It is possible that the project’s technology dominates

17The agent’s perception of the project does not directly depend on the team’s ability profile as his
ability only affects its scale, and the information about the others’ is subsumed in the equilibrium
efforts, which the agent cares about.
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the agent’s perception, in which case we call the project “intrinsically easy” or “in-
trinsically difficult.” In particular, an intrinsically easy project requires that the agent
perceive it to be easy even when he is very impatient (r → ∞), whereas an intrinsi-
cally difficult project requires that he perceive it to be difficult even when he is very
patient (r → 0).18

Given that ci(xi) = c(xi)/ai by (1), a useful observation from (10) is that the credit-
adjusted marginal cost, mci, is separable in the agent’s ability, ai. Thus, if a team
member perceives the project as intrinsically easy or intrinsically difficult, so do his
teammates; that is, the team’s perception is uniform over such projects. The following
result characterizes team members’ perceptions of the project.

Lemma 2 For 1 < k ≤ 2, the project is intrinsically easy whereas, for k ≥ 3+
√

5
2 ≈ 2.62,

it is intrinsically difficult. For 2 < k < 3+
√

5
2 , team members’ perceptions of the project may

differ, depending on the equilibrium efforts and discount rate.

Lemma 2 reveals that the project is intrinsically easy if its intrinsic marginal cost,
c′, is concave or k ≤ 2 for the iso-elastic specification, and intrinsically difficult if it is
sufficiently convex or k ≥ 2.62.19 Otherwise, if the project’s intrinsic marginal cost is
moderately convex, the equilibrium efforts and the discount rate also affect how an
agent views the project. We numerically demonstrate this point below, but first, we
establish the existence of an interior equilibrium.

Proposition 1 There is an (interior) equilibrium if and only if k 6= 2, or k = 2 and agents
are not too heterogenous in terms of ability. Furthermore, if the project is intrinsically easy or
intrinsically difficult, then the equilibrium is unique.

As alluded to above, the proof of Proposition 1 heavily exploits the fact that agents
play an aggregative game, allowing us to write each agent’s strategy as a function
of the total effort. For k 6= 2, an interior equilibrium obtains independent of the
team’s ability profile since, in this case, the marginal cost of effort satisfies Inada-like
conditions: c′′i (0) = 0 or ∞. For k = 2 (the quadratic cost), c′′i (0) = 1/ai, so the

18The reader will probably agree that given the state of knowledge, proving the Pythagorean the-
orem is intrinsically easy, whereas proving the Riemann Hypothesis, one of the Clay Mathematics
Institute’s millennium problems, is intrinsically difficult; see https://www.claymath.org/millennium-
problems.

19Specifically, we show that ∂mci(xi, X, r)/∂xi < 0 for all xi, X−i, r if and only if c′′′(xi) ≤ 0 for all xi,
and ∂mci(xi, X, r)/∂xi > 0 for all xi, X, r if and only if (c′(xi)/xi)

′ xi − (c(xi)/xi)
′ ≥ 0 for all xi, where

it is verified that (c′(xi)/xi)
′ sign
= c′′′(xi) and (c(xi)/xi)

′ sign
= c′′(xi).
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existence of an interior equilibrium requires that agents not be too heterogenous in
ability; otherwise, the free-riding incentive would be too strong to elicit positive effort
from all team members. Perhaps more importantly, the interior equilibrium is also
unique when the project is intrinsically easy or intrinsically difficult. When the project
is non-intrinsic, there can be multiple equilibria because each agent’s perception of
the project depends on what he expects of his teammates and on the discount rate.

Tables 1-3 demonstrate Proposition 1 for a three-member team with the ability
profile a = (3.1, 3.05, 3) and project technologies k = 2, 2.1, and 3. In light of Lemma
2, Tables 1 and 3 refer to intrinsically easy and intrinsically difficult projects, respec-
tively, and thus, the equilibrium is unique in each.20

r x∗1 x∗2 x∗3 u∗1 u∗2 u∗3
.01 .056 .061 .067 .286 .313 .340
.05 .120 .132 .145 .263 .289 .316
.50 .315 .361 .407 .189 .214 .239
.75 .363 .422 .481 .169 .194 .219
1 .397 .468 .539 .154 .179 .204
5 .516 .741 .966 .065 .090 .112
10 .443 .840 1.236 .032 .057 .078

Table 1. Intrinsically Easy Project: k = 2; (a1, a2, a3) = (3.1, 3.05, 3)

r x∗1 x∗2 x∗3 u∗1 u∗2 u∗3 Agent 1 Agent 2 Agent 3
.01 .054 .072 .085 .243 .323 .379 Easy Easy Easy
.05 .103 .154 .183 .208 .307 .364 Easy Easy Easy

.50
.291
.366

.344

.168
.507
.622

.172

.210
.199
.099

.285

.340
Diff.
Easy

Easy
Diff.

Easy
Easy

.75
.509
.344

.682

.212
.152
.784

.225

.157
.292
.098

.071

.329
Easy
Diff.

Easy
Diff.

Diff.
Easy

1
.240
.514

.182

.777
1.076
.190

.093

.192
.071
.276

.356

.074
Diff.
Easy

Diff.
Easy

Easy
Diff.

5 1.040 .700 .527 .120 .086 .066 Diff. Diff. Diff.
10 1.072 .828 .656 .071 .057 .047 Diff. Diff. Diff.

Table 2. Non-Intrinsic Project: k = 2.1; (a1, a2, a3) = (3.1, 3.05, 3)

20Simulations were done with Mathematica, using six different initial points to check convergence.
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r x∗1 x∗2 x∗3 u∗1 u∗2 u∗3
.01 .157 .154 .152 .331 .325 .319
.05 .265 .261 .256 .316 .310 .305
.50 .528 .519 .509 .249 .244 .240
.75 .587 .577 .566 .227 .224 .220
1 .630 .619 .608 .211 .207 .204
5 .852 .838 .823 .104 .102 .101
10 .920 .904 .889 .065 .064 .063

Table 3. Intrinsically Difficult Project: k = 3; (a1, a2, a3) = (3.1, 3.05, 3)

Table 2 shows that for k = 2.1, there are two equilibria for r = .5, .75, and 1.
Moreover, the agents’ perceptions of the project are mixed in each. Consider, for
instance, r = .5 in Table 2. Note that in the first equilibrium, only the most able
agent (a1 = 3.1) while in the second equilibrium, only the middle agent (a2 = 3.05)
perceives the project to be difficult. Note also that the agents’ perceptions of the
project are affected by the discount rate, signifying their patience to complete the
project. Specifically, when the agents are sufficiently patient, i.e., r = .01 or .05, they
all view the project to be easy, and when the agents are sufficiently impatient, i.e.,
r = 5 or 10, they all view it to be difficult.

The regions of the unique equilibrium in Proposition 1 are of special interest to
us because agents’ equilibrium behaviors sharply differ across the intrinsic projects.
Inspecting Tables 1 and 3, it is evident that the higher ability agent exerts lower (resp.
higher) effort for an intrinsically easy (resp. difficult) project. Proposition 2 general-
izes these observations.

Proposition 2 Suppose a1 ≥ a2 ≥ ... ≥ an. Then, in the unique (interior) equilibrium

(a) for an intrinsically easy project, the higher ability agent works less and thus receives
less credit: x∗1 ≤ x∗2 ≤ ... ≤ x∗n and q∗1 ≤ q∗2 ≤ ... ≤ q∗n,

(b) for an intrinsically difficult project, the higher ability agent works more and thus re-
ceives more credit: x∗1 ≥ x∗2 ≥ ... ≥ x∗n and q∗1 ≥ q∗2 ≥ ... ≥ q∗n,

with strict inequalities whenever ai 6= aj.
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Proof. Without loss of generality, take ai ≥ aj. In equilibrium, mb(X, r) =

mci(xi, X, r) by (10). Clearly, the left-hand side is equal for all agents. As for the right-
hand side, mci(xi, X, r) is strictly decreasing in ai since ci(xi) = c(xi)/ai. Moreover,
by definition, mci(xi, X, r) is strictly decreasing in xi for an intrinsically easy project.
Hence, it must be that x∗i ≤ x∗j and in turn, q∗i ≤ q∗j by (3), with strict inequalities for
ai 6= aj, proving part (a). Part (b) similarly follows because, by definition, mci(xi, X, r)
is strictly increasing in xi for an intrinsically difficult project.

To provide intuition for part (a), consider a two-member team with abilities a1 >

a2 and a quadratic cost of effort, ci(xi) = x2
i /(2ai), so that the project is intrinsically

easy. Recall that given the public’s credit allocation (q1, q2) and the teammate’s effort
choice, agent i’s optimal effort satisfies the first-order condition in (9). Dividing them
side by side for both agents and factoring out, we observe

q1

q2
=

(r + X− x1/2) /a1

(r + X− x2/2) /a2

(
x1

x2

)
. (11)

Suppose q1 ≥ q2. Then, the public must believe that the higher ability agent has
worked (weakly) harder: x1 ≥ x2. Given a1 > a2, this would imply q1

q2
< x1

x2
from (11).

That is, expecting more credit for collective success, the higher ability agent would
exploit the project’s intrinsic ease and work disproportionately harder. Hence, his
diligence would be inconsistent with the public’s credit allocation in equilibrium be-
cause by (3), the allocation must be proportional to team members’ efforts: q1

q2
= x1

x2
.

Such inconsistency means that for an intrinsically easy project, the public cannot suf-
ficiently compensate the higher ability agent in equilibrium if he is expected to work
harder. As a result, the only consistent behavior in an interior equilibrium is that the
higher ability agent exerts lower effort and receives less credit.21 For an intrinsically
difficult project, the problem of under-compensation does not arise since the marginal
cost is too steep for the higher ability agent to exert disproportionate effort.

21Here, one may argue that the public can overcome the problem of insufficient credit in equilibrium
by merely giving the higher ability agent the full credit for success: q1 = 1 and q2 = 0, which would
mean a non-interior equilibrium and no collaboration between the two agents over an intrinsically
easy project. Note, however, that agents cannot preclude each other from working solo on the break-
through. Thus, as we show in Section 5, the higher ability agent may strictly prefer to team up to avoid
costly competition. Besides, the agents may have committed to teaming up for various other reasons,
including the use of shared resources and an assignment by the company’s management. Hence, our
focus on the unique interior equilibrium for the team is appropriate.
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The equilibrium credit allocation in Proposition 2 raises an important question:
can a higher ability agent be worse off than his lower ability teammate in equilibrium?
Tables 1 and 3 suggest that the answer can be affirmative for an intrinsically easy
project but not for an intrinsically difficult one. Furthermore, Table 2 shows that the
expected payoffs can be non-monotonic in ability. For instance, for r = .5 in Table
2, the lowest expected payoff accrues to the highest ability team member in the first
equilibrium and to the medium ability member in the second. The intuition for these
observations lies in the tradeoff between an agent’s desire to receive more credit for
success and his dislike for working harder. To see the tradeoff formally, let u∗i denote
agent i’s expected equilibrium payoff. From (4) and (9),

u∗i =
X∗

r + X∗
q∗i −

ci(x∗i )
r + X∗

= q∗i − c′i(x∗i ). (12)

That is, in equilibrium, agent i’s expected payoff is simply the difference between his
expected credit and the marginal cost of effort. Despite the tradeoff, the next result
confirms our numerical findings in Tables 1 and 3.

Proposition 3 Suppose a1 ≥ a2 ≥ ... ≥ an. Then, in the unique (interior) equilibrium

(a) for an intrinsically easy project, the higher ability agent fares worse: u∗1 ≤ u∗2 ≤ ... ≤
u∗n,

(b) for an intrinsically difficult project, the higher ability agent fares better: u∗1 ≥ u∗2 ≥
... ≥ u∗n,

with strict inequality whenever ai 6= aj.
To understand part (a), note that when taking on an intrinsically easy project,

the higher ability agent commands a clear cost advantage both because he puts less
effort in equilibrium and because the same level of effort is less onerous for him;
that is, a1 > a2 implies x∗1 < x∗2 and c′1(x∗1) < c′2(x∗2). However, the higher ability
agent is also attributed proportionally less credit by the public: x∗1/X∗ < x∗2/X∗. Part
(a) shows that the credit effect dominates. Put another way, the lower ability agent
earns disproportionately more credit when the team undertakes an intrinsically easy
project. Part (b) follows because when taking on an intrinsically difficult project, the
diligence of the higher ability agent also discourages his teammates, allowing him to
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obtain disproportionately more credit for success than the increase in his cost. We
complete this section by reporting some intuitive comparative statics with respect to
agents’ abilities and the discount rate.

Proposition 4 Suppose a1 ≥ a2 ≥ ... ≥ an. Then, for intrinsic projects, the equilibrium
total effort is increasing in each agent’s ability and the discount rate: ∂X∗/∂ai > 0 for all i,
and ∂X∗/∂r > 0. Moreover, as his teammates grow more able, each agent works harder in
equilibrium for an intrinsically easy project, i.e., ∂x∗i /∂aj > 0 for i 6= j, but less hard for an
intrinsically difficult project, i.e., ∂x∗i /∂aj < 0 for i 6= j.

The fact that the inclusion of a more able agent improves the team’s success rate,
X∗, is expected. It is also expected that the team’s success rate increases with dis-
counting since impatient agents frontload their efforts. The second part of Proposi-
tion 4 follows because each agent views his effort as a “strategic complement” to the
team effort (including his own), i.e., ∂xi/∂X > 0, for the intrinsically easy project
while he views it to be a “strategic substitute” for the intrinsically difficult project,
i.e., ∂xi/∂X < 0.22 In particular, the agent is more concerned about cost savings
when working for the latter type of project.

Armed with the characterizations of the social optimum and team equilibrium,
we now compare them to identify inefficiencies.

4 Social optimum vs. team equilibrium

Given that each team member maximizes his own utility, it is unlikely that he will
choose the socially optimal effort in equilibrium. For an intrinsically easy project, the
inefficiency is evident since a higher ability team member works less in equilibrium,
even though the social optimum characterized in Lemma 1 would dictate otherwise.
For other types of projects, the inefficiency is not immediate, but we know that team
members do not internalize the impact of their efforts on others. To determine the

22Due to the aggregative nature of the game, we find it more convenient to define the concepts of
strategic complement and strategic substitute based on an agent’s response to the total effort in our
team setting. The reason is that, as mentioned above, an agent’s optimal strategy can be expressed in
terms of the team effort: xi = f (X, r, ai).

16



equilibrium inefficiency, here we ask a more direct question: what exogenous, possi-
bly non-Bayesian, credit profile would implement the socially optimal efforts in equi-
librium? We answer this question next and then show that, contrary to conventional
wisdom, some team members may overinvest if the team is sufficiently heterogenous.

4.1 Efficiency via exogenous credits

Suppose that before team members choose their efforts, the social planner publicly
announces the following credit profile:

qST = (qST
1 , ..., qST

n ) ∈ Rn.

To focus purely on team incentives, we assume that qST has no explicit cost to the
planner. For this credit profile to implement the socially optimal efforts in equilib-
rium, i.e., to engender xS = x∗, it must satisfy agents’ first-order conditions in (9).
After simplification, this requires that

rqST
i = c′i(xS

i )(r + XS)− ci(xS
i ) for all i. (13)

In addition, xS must satisfy the planner’s first-order conditions in (7), which, by re-
arranging, implies that

r = c′i(xS
i )(r + XS)−∑

j
cj(xS

j ) for all i. (14)

From (13) and (14), Proposition 5 is immediate.

Proposition 5 The socially optimal efforts are implemented as a team equilibrium by the
following credit profile:

qST
i = 1 +

∑` 6=i c`(xS
` )

r
for all i. (15)

Under (15), a higher ability agent receives less credit for team’s success and a lower expected
payoff: qST

i < qST
j and uST

i < uST
j for ai > aj.

Proof. (15) directly obtains from (13) and (14). To prove the rest, take ai > aj.

Then, c′i(xS
i ) = c′j(xS

j ) and xS
i > xS

j by Lemma 1. Moreover, since ci(xi) =
xk

i
kai

, we
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have that ci(xi) = xi
k c′i(xi) and, in turn, ci(xS

i ) > cj(xS
j ). Next, note that (15) can be

re-written: qST
i = 1 + ∑` c`(xS

` )
r − ci(xS

i )
r . Hence, qST

i < qST
j and uST

i < uST
j by (12).

As expected, the planner assigns credit so that each team member receives the full
return to his effort. In particular, agent i is offered a unit credit for marginally in-
creasing the rate of discovery, i.e., ∂X/∂xi = 1, and an additional credit for saving his
teammates from future effort costs owing to a faster discovery, i.e.,

(
∑` 6=i c`(xS

` )
)

/r.
Agent i is, however, not compensated for his own cost savings, as he internalizes
them.

Proposition 5 reveals that to induce the efficient efforts in equilibrium, the team
must be over-rewarded for success in that ∑i qST

i > 1. That is, the team has to be
distributed more surplus than it produces.23 While interesting in itself, such “budget-
breaking” requirement for efficiency in teams is known at least from Holmstrom
(1982). An important implication of this observation in our context is that the (Bayesian)
public necessarily balances the budget in allocating credits, namely ∑i q∗i = 1, and
thus must provide too weak incentives for some team members. Proposition 5, how-
ever, goes further: for efficiency, each team member must be given more than the full
credit for success. It is clear from (15) that such excessive rewarding of success is due
to team externalities as well as the dynamics of the breakthrough. In particular, ob-
serve that agent i would receive no more than the full credit, qST

i = 1, if he worked
solo or the agents were all myopic, i.e., r → ∞.

Perhaps surprisingly, Proposition 5 also reveals that for efficiency, the higher abil-
ity agent must receive less credit for success and a lower utility, regardless of whether
the project is perceived to be easy or difficult. The reason is that by Lemma 1, the
higher ability agent works harder and thus incurs a higher cost of effort at the social
optimum. Such diligence, however, means that his cost savings for others must be
less than those of a lower ability agent’s and in turn, deserves a less generous com-
pensation via a credit. The utility comparison is then straightforward from (12).

23There is some evidence for this observation. Using the annual research activity of 661 MIT faculty
over 31 years, Bikard et al. (2015) find that each scientist expects to receive 70% of the total credit
when collaborating. In the same vein, an earlier study by Lindsey (1980) suggests giving the full
credit to each co-author to account for peer perception (see also footnote 8). Incidentally, universities
often reward their productive faculty internally in the form of reduced teaching, salary increases, or
promotions above and beyond the recognition they receive from the scientific community for the same
research.
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It is important to note that the inverse relationship between one’s ability and ex-
pected payoff in Proposition 5 obtains because the planner elicits the efficient efforts
in equilibrium through individual credits. If the planner could contract directly on
the effort levels, the higher ability agent would receive more credit and a higher pay-
off, as found in Lemma 1. Moreover, with such contractibility, the planner would be
less generous in her credit assignment: qS

i < 1 < qST
i for all i. This also makes sense

since when efforts are unobservable, the planner must over-reward the agents or pay
them “rents” to induce the efficient efforts as a team equilibrium. In Section 5.2, we
will show that the planner’s over-rewarding of teams will encourage collaboration
among agents.

4.2 Overinvestment in teams

The exogenous credit profile, qST, stated in (15) implements the efficient efforts as a
team equilibrium by compensating each agent for positive externalities on his peers.
Since qST

i 6= q∗i for all i, it suggests that the equilibrium efforts are inefficient. Fur-
thermore, since q∗i < 1 < qST

i for all i, i.e., the social planner over-rewards each team
member with respect to the equilibrium, it also suggests that the equilibrium efforts
must be all inefficiently low. This intuition is, however, incomplete in our model with
endogenous credits. In the following two results, we show that while agents under-
invest in a homogenous team, some may overinvest in a sufficiently heterogenous
one.

Lemma 3 Suppose the team is homogenous, i.e., ai = a for all i. Then, every agent under-
invests, i.e., x∗i < xS

i for all i.

Lemma 3 obtains because, in a homogenous team, each agent expects to receive
equal credit for the team’s success in any equilibrium, which amounts to teamwork
with an exogenous sharing rule of 1/n. Hence, the agent’s behavior is plagued with
the standard free-riding incentive, resulting in the underinvestment.

This straightforward logic, however, does not extend to a heterogenous team, even
though the agents still take the sharing rule or the credit allocation, q∗, as given when
choosing their efforts. To gain some intuition, consider a two-member team with abil-
ities (a1, a2) = (50, 2) and discount rate r = .1. Table 4 reports the unique equilibrium
and socially optimal effort levels for project technologies k = 1.5 and k = 3.
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k x∗1 xS
1 x∗2 xS

2
1.5 0.004 5.877 0.516 0.009
3 1.866 1.801 0.052 0.360

Table 4. Over- vs. Under-investment in Teams

Note that for the intrinsically difficult project (k = 3), agent 1, being substantially
more able, works virtually solo in equilibrium and expects to collect most of the credit
for success (q∗1 = .973). Such equilibrium effort allocation is too unequal from the so-
cial perspective: the high ability agent overinvests (x∗1 > xS

1 ) while the low ability
agent underinvests (x∗2 < xS

2 ) in the project. Unconcerned about the credit distri-
bution within the team (see (5)), the planner would optimally allocate more balanced
workload to the agents so that their marginal costs are equal. A similar argument also
explains the direction of the inefficiency for the intrinsically easy project (k = 1.5):
the high ability agent underinvests (x∗1 < xS

1 ) while the low ability agent overinvests
(x∗2 > xS

2 ). In this case, we know from Proposition 2 that it is the low ability agent
who is expected to undertake most of the work, which is clearly in contrast to the
optimal effort allocation. We generalize these observations in Proposition 6.

Proposition 6 Consider a two-member team with a1 > a2. For a sufficiently large a1,

(a) the high ability agent underinvests whereas the low ability agent overinvests in an intrin-
sically easy project: x∗1 < xS

1 and x∗2 > xS
2 ,

(b) the high ability agent overinvests whereas the low ability agent underinvests in an in-
trinsically difficult project: x∗1 > xS

1 and x∗2 < xS
2 .

5 Solo work

Up to now, we have assumed that agents are committed to collaborating on the
project. Such commitment may be unavoidable in many contexts. The project may be
part of a broader research agenda; it may be assigned to a group of employees by their
employer, or it is a policy proposal that a congressional committee brings forward.
For many projects, though, agents are flexible in choosing whether to collaborate or
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work solo. Proposition 3 suggests that the highest ability agent would prefer to work
solo at least for the intrinsically easy projects since he would fare the worst in a team.
We will, however, argue that despite sharing the credit for success and enjoying no
direct synergies from collaboration, agents may team up to avoid costly competition
when they are of similar ability and sufficiently patient. To this end, we next consider
the case of solo work and compare its equilibrium payoffs with those of teamwork.
We then characterize the non-Bayesian credit profile that implements the efficient ef-
fort levels under solo work and show that the social planner would also encourage
teamwork by under-rewarding solo work.

5.1 Equilibrium in solo work and incentives to team up

Suppose that each agent i takes on the project alone and exerts an unobservable flow
effort xi toward its completion. This means that the first successful agent receives
the full credit of one from the public while the rest receives no credit. Hence, the
competition among the agents becomes a standard R&D race, as in Lee and Wilde
(1980), with a unit prize. Similar to (4), it is readily verified that conditional on having
no winner yet, agent i’s expected payoff is found to be24

ûi =
xi

r + X
− ci(xi)

r + X
. (16)

Interpreting, again, the interest rate r as the nature’s fixed flow effort to “steal” the
discovery, the first term xi/(r+ X) is simply the probability that agent i wins the race,
and the second term ci(xi)/(r + X) is his expected total cost until there is a winner.

In (Nash) equilibrium, agent i maximizes (16) with respect to xi given others’ total
effort X−i. The first-order condition of his maximization requires that25

r + X−i = c′i(xi)(r + X)− ci(xi). (17)

The equilibrium profile of efforts denoted by xL = (xL
1 , ..., xL

n) solves (17) for i =

1, ..., n. Let ûL
i be the resulting expected payoff for agent i.

24Formally, having no winner by time t, agent i wins the race in the next instant with probability
xidt and obtains the full credit of 1. Hence, (16) obtains from

ûi =
∫ ∞

0
e−rte−Xt (xi − ci(xi)) dt.

25The second-order condition is satisfied.
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Lemma 4 Under solo work, there is an equilibrium. Moreover, in every equilibrium, the
higher ability agent competes harder and receives a higher expected payoff: xL

i > xL
j and

ûL
i > ûL

j for ai > aj.

Under solo work, every equilibrium must be interior, i.e., xL
i > 0 for all i because,

unlike in teamwork, each agent expects an exogenous reward from the success.26 In
addition, exploiting his cost advantage toward the same reward, the higher ability
agent exerts greater effort and is better off than his lower ability rivals. To under-
stand the nature of the competition among the agents, it can be seen from (17) that
their efforts are strategic complements: agents are motivated by others’ effort.27 As
such, the competition is expected to grow most intense among homogenous agents.
We, therefore, predict that such agents will have an incentive to team up even if that
means sharing the credit for success. Proposition 7 confirms our prediction when the
agents are sufficiently patient.

Proposition 7 Assume homogenous agents, i.e., ai = a for all i. Then, each agent is strictly
worse off by working solo than by working with others as a team: ûL < u∗ as r → 0.

Note that when they work as a team and thus, face no competition, patient agents
can afford to postpone the discovery by exerting little effort each time. The same
strategy is not optimal for patient agents racing to success. Moreover, in a homoge-
nous population, each agent expects to receive a reward of 1/n in equilibrium due to
equal credit sharing under teamwork and an equal probability of winning under solo
work. Hence, patient agents strictly prefer to team up and avoid costly competition
when they are identical.

Three remarks about Proposition 7 are in order. First, the result holds regardless
of whether agents perceive the project to be easy or difficult. Second, the result of-
fers an equilibrium theory of team formation when there are only two agents, e.g.,
two authors, which is common in scientific research.28 And third, by the continuity

26Formally, ∂ûi
∂xi

∣∣∣
xi=0

= 1
r+X > 0.

27Differentiating (17) reveals ∂xi
∂X−i

=
1−c′i(xi)

c′′i (xi)(r+X)+1−c′i(xi)
> 0 since, combining (16) and (17), we

observe that 1− c′i(xi) = ûi > 0 in equilibrium.
28For an arbitrary number of agents, one needs to consider all possible subteams. We leave this

interesting issue for future research.
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of payoffs, the result extends to agents who are not too heterogeneous and not too
impatient. We illustrate the last two remarks by a numerical example.

Consider two agents with abilities (a1, a2) = (3, 2.8), and a quadratic cost technol-
ogy, k = 2, referring to an intrinsically easy project. Table 5 reports that agents have a
strict incentive to team up for interest rates r ≤ .2.

r x∗1 xL
1 x∗2 xL

2 u∗1 uL
1 u∗2 uL

2
.01 .085 1.976 .106 1.895 .416 .341 .518 .323
.05 .179 1.989 .228 1.908 .380 .337 .479 .319
.1 .244 2.006 .315 1.922 .355 .331 .452 .313
.15 .289 2.021 .379 1.936 .336 .326 .432 .308
.2 .325 2.036 .431 1.950 .322 .321 .416 .304

Table 5. Team- vs. Solo Work

Take, for instance, r = .1. Consistent with Proposition 2(a), the high ability agent
fares worse in teamwork, u∗1 = .355 < .452 = u∗2 . This does not, however, mean that
he would operate solo since he would then have to compete with the low ability agent
for the breakthrough. Although the high ability agent would be better off than his
rival in this competition, uL

1 = .331 > .313 = uL
2 , he would be worse off than working

as a team, i.e., uL
1 < u∗1 . Hence, agent 1 has a strict incentive to team up. Since the

same preference is shared by the low ability agent, the two would collaborate and do
so despite having no direct synergies between them in our model.29

5.2 Efficient credits in solo work

Proposition 7 identifies agents’ incentives to collaborate when the rewards are en-
dogenously given by the public. It is also edifying and policy relevant to determine
team formation incentives when the rewards are exogenously given by a social plan-
ner who wants to induce the optimal efforts. Note that the optimal effort profile under
solo work is the same as under teamwork, xS, found in Lemma 1 since, summing up

29For r > .2, our simulations indicate that agent 1 is worse off whereas agent 2 is better off teaming
up.
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(16), welfare coincides with (5):30

∑i ûi =
X

r + X
− ∑i ci(xi)

r + X
= W.

Proceeding as in Section 4.1, suppose that before the agents choose their efforts un-
der solo work, the social planner publicly announces the following credit profile for
success:

qSL = (qSL
1 , ..., qSL

n ) ∈ Rn. (18)

Given qSL, agent i’s expected payoff in (16) is modified to be

ûi =
xi

r + X
qSL

i −
ci(xi)

r + X
, (19)

which implies the first-order condition:

(r + X−i) qSL
i = c′i(xi)(r + X)− ci(xi). (20)

For qSL to implement the optimal effort profile under solo work, it must be that xS =

xL. Hence, evaluating (20) at xS and comparing it with the social planner’s first-order
condition in (14), we reach the next conclusion.

Proposition 8 The socially optimal efforts are implemented as an equilibrium under solo
work by the following credit profile:

qSL
i =

r + ∑` 6=i c`(xS
` )

r + X−i
for all i. (21)

In addition, under (21),

(a) each agent is under-rewarded for success: qSL
i < 1 for all i,

(b) a higher ability agent receives more credit for success and a higher expected payoff: qSL
i >

qSL
j and ûSL

i > ûSL
j for ai > aj.

As with teamwork, the social planner sets the credit profile qSL so that agent i is
compensated for the externalities on his peers. Comparing (21) with (15), it is evi-
dent that the only difference between them is that under solo work, agent i’s credit is

30This coincidence is not surprising because, in both settings, the planner is concerned about the rate
of discovery and the total cost but not about who makes the discovery.
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further discounted by the discovery rate of his rivals’, X−i. Since agent i internalizes
such competitive pressure when choosing his effort, he is not rewarded for it. In fact,
Proposition 8 says that the presence of competition causes him to be under-rewarded:
qSL

i < 1. That is, to induce the optimal efforts, the planner would commit to recog-
nizing an agent’s achievement only partially, thereby softening the competition. This
clearly contrasts with the Bayesian public who would assign the full credit of one
ex post to the successful solo achiever. Proposition 8 also says that a higher ability
agent receives more credit for success and is better off than his lower ability rivals as
a result. While intuitive, this finding clashes with that for teamwork in Proposition
5. The reason is that the competitive pressure mentioned above is lower for a higher
ability agent, and to motivate him, the planner discounts his reward less heavily.

From Propositions 5 and 8, it is immediate that qSL
i < 1 < qST

i for all i; that is, re-
lying on the competition as an incentive mechanism, the planner rewards each agent
less generously under solo work than under teamwork to elicit the same optimal ef-
fort profile, xS. Hence, given the exogenous credit schemes qST and qSL, the agents
strictly prefer to team up, as we formally state in the following result.

Proposition 9 Given the credit profiles qST and qSL in (15) and (21), respectively, each
agent strictly prefers teamwork to solo work; i.e., ûSL

i < uST
i for all i.

Note that Proposition 9 holds for all agents regardless of their abilities and pa-
tience because each is over-rewarded under teamwork for exerting the same effort,
xS

i . As such, compared with Proposition 7, it implies that the society, e.g. the sci-
entific community, provides the agents with stronger incentives to team up than the
Bayesian public.

6 Observable effort

A key obstacle for credit attribution in teamwork is that individual efforts are unob-
servable to the public. While this monitoring problem is likely to be severe in cases
where the public is in an arms-length relationship with the team, it may be less so
in others. For instance, in academia, it is not uncommon that researchers discuss
their ongoing projects with their colleagues and regularly present them at confer-
ences. Similarly, in business, managers can often track employees’ work hours.
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Since credit attribution affects team incentives, it is natural to ask how the observ-
ability of effort by the public may change these incentives. To this end, suppose that,
unlike in Section 3.2, the public can perfectly observe, though cannot dictate, team
members’ flow of efforts. The same level of monitoring may or may not be available
within the team, but this is irrelevant in our setting because efforts are chosen simul-
taneously. Hence, given his teammates’ flow effort X−i, agent i expects to receive
the credit qi =

xi
xi+X−i

, which is increasing in his own effort, xi. This means that the
observability of effort by the public creates competition for credit within the team.

To see the amount of competition, we substitute for qi in (4) and find the following
expected payoff for agent i under the observability:

uO
i =

X
r + X

(xi

X

)
− ci(xi)

r + X
(22)

=
xi

r + X
− ci(xi)

r + X
.

Clearly, (22) coincides with (16). In words, teamwork with observable efforts is strate-
gically equivalent to solo work for the agents. From this equivalence and our results
in Section 5.1, two main insights emerge.

First, Lemma 4 implies that when the public can monitor efforts, a higher ability
agent always works harder and receives more credit from success. Second, Proposi-
tion 7 reveals that team members dislike such public monitoring if they are of similar
ability and sufficiently patient. The reason is that the lack of monitoring allows them
to commit not to compete for credit. Interestingly, as was demonstrated in Table
5, despite his competitive advantage, a higher ability agent would also endorse no
monitoring by the public even though he would fare worse than his lower ability
teammate when collaborating in an intrinsically easy project.

7 Conclusion

Proper credit for scientific discovery plays a key role in the progress of science, as
it affects appointments, promotions, and funding for researchers. Assigning credit,
however, has grown complicated by the increasing dominance of collaborative work
across many disciplines. A similar problem also exists in non-academic settings such
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as business and politics, where teamwork is prevalent. In this paper, we have exam-
ined in some detail the endogenous relationship between credit attribution and team
incentives in a tractable model. Our main results are as follows.

First, it is the most diligent – not necessarily the most able – team member who
deserves the most credit for collective success. And the identity of that member de-
pends on the team’s composition and the project’s difficulty. In particular, it is the
least able member who works the hardest for an “intrinsically easy” project and thus
receives the most credit for success, while the opposite holds for an “intrinsically dif-
ficult” project. Second, team equilibrium may exhibit over-investment. We show that
in a two-member team with sufficient ability differential, expecting to receive most
of the credit, the low (resp. high) ability agent almost works solo in an intrinsically
easy (resp. difficult) project. This workload allocation, however, is too unbalanced
from the social viewpoint. Third, to induce efficient efforts, the team must be sub-
stantially over-rewarded to mitigate the moral hazard. In contrast, efficiency requires
under-rewarding solo work to soften competition. Fourth, both the equilibrium and
social credit attributions give agents incentives to team up, which may explain the
prevalence of teamwork even without synergies. Last, but not least, we show that
team members may dislike public monitoring of their efforts for proper credit be-
cause such monitoring also creates competition within the team.

While contributing to the ongoing debate on credit attribution in teamwork, our
investigation has only scratched the surface. For one, unlike in our model, many team
projects require multiple breakthroughs or milestones to be completed. It would be
interesting to explore credit allocation in such complex projects. Furthermore, team
projects may involve a deadline, especially when they are sponsored. The deadline
is likely to render effort choices non-stationary and introduce credit attribution dy-
namics. For instance, if the project is completed much earlier than the deadline, will
the low- or high-ability team member get more of the credit? Finally, though as-
sumed away in our model for tractability, agents often accumulate knowledge, i.e.,
they learn from their past failures. Such learning is likely to affect their perceptions
of the project’s difficulty. Thus, as with deadlines, knowledge accumulation is ex-
pected to generate nontrivial effort and credit attribution dynamics. We leave these
extensions for future research.
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1 Appendix for online publication

Proof of Lemma 1. As established in the text, the solution to (SO) must equalize
marginal costs across agents; that is,

c′i(xi) = z ≥ 0 for all i. (A-1)

Since ci(xi) =
c(xi)

ai
and c′ > 0, (A-1) can be inverted as

xi = φ(aiz), (A-2)

where φ ≡ c′−1, φ(0) = 0, and φ′ > 0.
Using (A-2), the first-order condition in (7) can be re-written:

Γ(z) ≡ (r + ∑
i

φ(aiz))z−∑
i

ci(φ(aiz))− r = 0. (A-3)

Clearly, Γ(0) = −r < 0. Moreover,

Γ(1) = ∑
i

φ(ai)−∑
i

ci(φ(ai))

= ∑
i
(xi − ci(xi))

> ∑
i

xi
(
1− c′i(xi)

)
= 0,

where we employ the facts that ci
xi
< c′i (since c′′i > 0) and c′i(xi) = z = 1.

Hence, Γ(1) > 0 and, by continuity, there is an interior solution, zS ∈ (0, 1), to
(A-3). Next, we observe that

Γ′(z) = r + ∑
i

φ(aiz) + z ∑
i

φ′(aiz)ai −∑
i

c′i(φ(aiz))︸ ︷︷ ︸
=z

φ′(aiz)ai (A-4)

= r + ∑
i

φ(aiz)

> 0,

which establishes that zS is unique.
As a result, there is a unique optimal solution to (SO) such that xS

i = φ(aizS) > 0,
proving part (a).
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Part (b) readily follows because, for ai > aj,

xS
i = φ(aizS) > φ(ajzS) = xS

j ,

and in turn, qS
i = xS

i /XS > xS
j /XS = qS

j .
Finally, by definition,

uS
i ≡

XS

r + XS qS
i −

ci(xS
i )

r + XS =
xS

i − ci(xS
i )

r + XS .

Moreover, ∂(xi − ci(xi))/∂xi = 1 − c′i(xi) > 0 for c′i(xi) < 1, which is true at the
optimum. Hence, uS

i > uS
j since xS

i > xS
j .

Proof of Lemma 2. First, define

Φ(xi, X, r) ≡ c′(xi)(r + X)− c(xi)

xi
. (A-5)

Next, observe from (10) that mci(xi, X, r) = Φ(xi, X, r) X
(r+X)2ai

, which implies

mci
xi

sign
= Φxi , (A-6)

where the subscripts refer to partial derivatives throughout.
Clearly,

Φxi =

(
c′(xi)

xi

)′
(r + X)−

(
c(xi)

xi

)′
. (A-7)

Since (
c(xi)

xi

)′ sign
= c′′(xi) > 0 and

(
c′(xi)

xi

)′ sign
= c′′′(xi),

it follows that if c′′′(xi) ≤ 0 for all xi, then

Φxi < 0 for all xi, X−i, r. (A-8)

Conversely, suppose (A-8) holds, but c′′′(xi) > 0 for some xi. Then, (A-7) would
imply that Φxi > 0 for r + X−i → ∞, a contradiction. Hence, by (A-6), the project is
intrinsically easy if and only if c′′′(xi) ≤ 0 for all xi. For the iso-elastic specification,
c(xi) = xk

i /k, it is readily verified that

c′′′(xi) ≤ 0⇐⇒ 1 < k ≤ 2.
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Next, by (A-6), the project is intrinsically difficult if and only if Φxi > 0 for all xi, X−i, r,
which, by (A-7), requires that c′′′(xi) > 0 for all xi. Hence, the project is intrinsically
difficult if and only if Φxi ≥ 0 for r = X−i = 0 and all xi, or equivalently,(

c′(xi)

xi

)′
xi −

(
c(xi)

xi

)′
≥ 0 for all xi. (A-9)

For c(xi) = xk
i /k, (A-9) is satisfied if and only if (k− 2)− k−1

k ≥ 0, or k ≥ 3+
√

5
2 ≈ 2.62,

as claimed.
Proof of Proposition 1. We offer a more general proof here by imposing the fol-

lowing three cost conditions. It is straightforward to verify that the iso-elastic speci-
fication, c(x) = xk/k with k > 1, satisfies them.

lim
x→∞

c(x)
xc′(x)

< 1 (C1)

lim
x→0

xc′′(x)
c′(x)

< 1 if c′′(0) = ∞. (C2)

c′′(0) = 0 if c′′′ > 0. (C3)

As a preliminary, we use Φ(xi, X, r) from (A-5) and define

m(xi, X, r) ≡ XΦ(xi, X, r). (A-10)

Then, given that ci(xi) =
c(xi)

ai
, the first-order condition in (10) can be written as

m(xi, X, r) = rai. (A-11)

Clearly,

mxi

sign
= Φxi . (A-12)

Depending on the sign[Φxi ], we consider two cases in turn.

Case 1. c′′′(xi) ≤ 0 for all xi (k ∈ (1, 2] for c(x) = xk/k).
From Lemma 2, this case refers to the intrinsically easy project. In particular, Φxi <

0 and thus, mxi < 0. Given X > 0, there is a unique solution xi ∈ [0, X] to (A-11) if
and only if

A(X) ≤ rai ≤ B(X)
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where

A(X) ≡ m(X, X, r) = c′(X)(r + X)− c(X), (A-13)

B(X) ≡ m(0, X, r) = c′′(0)(r + X)X.

Clearly, A(0) = 0 and, by (C1), A(∞) = ∞. Furthermore, A′(X) = c′′(X)(r + X) > 0.
Hence, there is a unique cutoff 0 < Xi < ∞ such that A(X) ≤ rai for X ≤ Xi. For
B(X) ≥ rai, we consider two subcases.

Case 1.1. c′′(0) = ∞ (k < 2 for c(x) = xk/k).
Then, B(X) > rai for all X > 0. This implies that there is a unique solution

xi = f (X, r, ai), (A-14)

to (A-11) if and only if X ∈ [0, Xi], with f (0, r, ai) = 0 and f (Xi, r, ai) = Xi.

Substituting (A-14) into (A-11), we re-write (A-11) as

Φ( f (X, r, ai), X, r) =
rai

X
, (A-15)

which implies

fX(., ai) = −
rai
X2 + ΦX

Φxi

(A-16)

and
fai(., ai) =

r
XΦxi

. (A-17)

From (A-5), we obtain

ΦX =
c′(xi)

xi
> 0 and (A-18)

Φxi =
1
xi

[
c′′(xi)(r + X)− c′(xi)−Φ

]
. (A-19)

Substituting (A-18) and (A-19) into (A-16), and using Φxi < 0, it follows that

fX(., ai) =
xi
X Φ + c′(xi)

Φ + c′(xi)− c′′(xi)(r + X)
(A-20)

>
xi
X Φ + c′(xi)

Φ + c′(xi)

≥ xi

X
.
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Hence, using (A-14),

fX(., ai) >
f (X, r, ai)

X
. (A-21)

Next, note that summing (A-14) across agents, the equilibrium total effort X must
solve

h(X, r, a) ≡∑
i

f (X, r, ai)− X = 0. (A-22)

Moreover, note from (A-21) that

hX(.) = ∑
i

fX(., ai)− 1 > 0 whenever h(.) = 0. (A-23)

Hence, if a solution to (A-22) exists, it must be unique.

We now establish the existence. First, observe that for any j,

h(Xj, r, a) = ∑
i 6=j

f (Xj, r, ai) + f (Xj, r, aj)− Xj︸ ︷︷ ︸
=0

(A-24)

> 0.

Second, since h(0, .) = 0, to complete the proof, we need to establish that h(X̂, .) < 0
for some X̂ > 0. To do so, it suffices to show that limX→0 fX(., ai) = 0, which, by
(A-23), will reveal that limX→0 hX(.) = −1 < 0.

Dividing both the numerator and denominator on the right-hand side of (A-20)
by Φ, we have that

fX(., ai) =
xi
X + c′(xi)

Φ

1 + c′(xi)
Φ − c′′(xi)(r+X)

Φ

. (A-25)

Using the definition of Φ(.) in (A-5), we can re-write the last term in the denominator
in (A-25) as

c′′(xi)(r + X)

Φ
=

xic′′(xi)

c′(xi)(r + X)− c(xi)
(r + X). (A-26)

Since xi = f (X, r, ai) and f (0, r, ai) = 0, it follows, from (A-26) and (C2), that

lim
X→0

c′′(xi)(r + X)

Φ
= lim

xi→0

xic′′(xi)

c′(xi)
< 1. (A-27)

For the other terms in (A-25), we observe

limX→0 Φ(xi, X, r) = ∞, limX→0 f (X, r, ai) = 0 and limX→0
f (X,r,ai)

X = 0.
(A-28)
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Applying (A-27) and (A-28) in (A-25), we, therefore, obtain

lim
X→0

fX(., ai) = lim
X→0

xi
X + c′(xi)

Φ

1 + c′(xi)
Φ − c′′(xi)(r+X)

Φ
= 0.

Hence, there exists some X̂ > 0 such that h(X̂, .) < 0, and in turn, a unique solution
X∗ > 0 to (A-22). Given fX(., ai) > 0 by (A-21), we find x∗i = f (X∗, r, ai) > 0, proving
the existence and uniqueness of an interior equilibrium when c′′(0) = ∞.

Case 1.2. c′′(0) < ∞ (k = 2 for c(x) = xk/k).
Then, from (A-13), we have that B(X) > rai if and only if X > Zi, where

Zi =
1
2

(
−r +

√
r2 +

4rai

c′′(0)

)
> 0.

Recall that A(X) ≤ rai for X ≤ Xi. We next show Zi < Xi. To do so, it suffices to
show that A(X) < B(X) for X > 0. Let ∆(X) ≡ B(X)− A(X). Then, from (A-13),

∆(X) = c′′(0)(r + X)X− c′(X)(r + X) + c(X).

Clearly, ∆(0) = 0, and

∆′(X) = c′′(0)(r + 2X)− c′′(X)(r + X) (A-29)

≥ c′′(X)(r + 2X)− c′′(X)(r + X) (since c′′′(X) ≤ 0)

= Xc′′(X).

> 0 for X > 0.

Hence, ∆′(X) > 0 and, in turn, ∆(X) > 0 for X > 0, establishing that A(X) < B(X)

for X > 0. As a result, f (X, ai, r) ∈ [0, X] if and only if X ∈ [Zi, Xi], with f (Zi, r, ai) =

0.
In sum, together with (A-24), when c′′(0) < ∞, an interior equilibrium exists if

and only if
h(Zi, r, a) < 0 for all i.

Case 2. c′′′(xi) > 0 for all xi (k > 2 for c(x) = xk/k).

6



First, by (C3), c′′(0) = 0. Hence, B(X) = 0 in (A-13). Moreover, rai ≤ A(X)

whenever X ≥ Xi. Hence, there is a solution

xi = f (X, r, ai) ∈ [0, X]

to (A-11) if and only if X ≥ Xi, with f (Xi, r, ai) = Xi. It follows from (A-22) that
h(Xi, r, a) > 0 for any i. Furthermore, limX→∞ h(X, r, a) = −∞. Therefore, there
exists an X∗ > 0 that solves (A-22). In particular, X∗ > maxi Xi, implying that x∗i > 0
for all i.

Suppose now the project is intrinsically difficult, i.e., mci
xi
> 0 (and hence Φxi > 0)

for all i. It follows from (A-16) that fX(., ai) < 0. This further implies, from (A-23),
that hX < 0 whenever h(.) = 0, proving the uniqueness of the interior equilibrium in
this case.

Proof of Proposition 3. To prove part (a), suppose the project is intrinsically easy:
c′′′(xi) ≤ 0 and thus Φxi < 0, where Φ = Φ(xi, X, r) is as defined in (A-5). In this
part, we also impose the following cost condition:(

c(xi)

c′(xi)

)′′
≤ 0 for all xi, (C4)

which is, again, satisfied by the iso-elastic cost: c(xi) = xk
i /k with k > 1.

Consider agent i’s equilibrium utility described in (12). Given q∗i = x∗i /X∗, it can
be re-written as

u∗i =
x∗i
X∗
−

c′(x∗i )
ai

. (A-30)

Next recall from the previous proof that x∗i = f (X∗, r, ai). Substituting for x∗i and
dropping the star sign for simplicity here, (A-30) becomes

ui =
f (X, r, ai)

X
− c′( f (X, r, ai))

ai
≡ U(X, r, ai). (A-31)

It is evident from (A-31) that to obtain the reverse utility ordering in part (a), it suffices
to show that

Uai(X, r, ai) < 0.

To this end, we partially differentiate (A-31) with respect to ai and substitute back for
xi = f (X, r, ai) to find

Uai =

[
1
X
− c′′(xi)

ai

]
fai +

c′(xi)

a2
i

. (A-32)

7



Since fai =
r

XΦxi
by (A-17), we observe

Uai ¡ 0 ⇐⇒ c′(xi)

a2
i

< −
[

1
X
− c′′(xi)

ai

]
r

XΦxi

(A-33)

⇐⇒ c′(xi) < −
[ ai

X
− c′′(xi)

] rai

XΦxi

⇐⇒ −c′(xi)Φxi <
[ ai

X
− c′′(xi)

] rai

X
,

where the last line follows because Φxi < 0.
Collecting terms, we further observe

Uai ¡ 0 ⇐⇒ −c′(xi)Φxi + c′′(xi)
rai

X
<

ra2
i

X2 (A-34)

⇐⇒ r
[
−c′(xi)Φxi + c′′(xi)

rai

X

]
<
(rai

X

)2

⇐⇒ r
[
−c′(xi)Φxi + c′′(xi)Φ

]
< Φ2

⇐⇒ r
−c′(xi)Φxi + c′′(xi)Φ

Φ2 < 1

⇐⇒ r
∂

∂xi

[
c′(xi)

Φ

]
< 1,

where the third line follows because Φ = rai
X by (A-10) and (A-11).

Next, by the definition of Φ from (A-5), note that

c′(xi)

Φ
=

c′(xi)
c′(xi)(r+X)−c(xi)

xi

=
xi

r + X− c(xi)

c′(xi)︸ ︷︷ ︸
≡g(xi)

.

Hence,
∂

∂xi

[
c′(xi)

Φ

]
=

r + X− g(xi) + xig′(xi)

(r + X− g(xi))2 .

Since g′′(xi) ≤ 0 by the cost condition C4 above, we have that −g(xi) + xig′(xi) ≤ 0.
Moreover, g(xi) ≤ xi since c′′(xi) > 0. Therefore, from (A-34),

Uai < 0 if
r(r + X)

(r + X− xi)2 < 1.
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Now recall from Proposition 2 that for an intrinsically easy project, the ability profile
a1 ≥ ... ≥ an implies x1 ≤ ... ≤ xn in equilibrium. Hence, xi ≤ X

2 for all i 6= n since
for a positive set of real numbers, there can be at most one that is strictly larger than
the half of their sum. For i 6= n, we thus conclude

r(r + X)

(r + X− xi)2 ≤
r(r + X)

(r + X− X
2 )

2
=

r(r + X)

r(r + X) + X2

4

< 1,

which proves that Uai(X, r, ai) < 0 for i 6= n and in turn,

U(X, r, a1) ≤ U(X, r, a2) ≤ ... ≤ U(X, r, an),

with strict inequality whenever ai 6= aj, as desired.
To prove part (b), suppose the project is intrinsically difficult: mci

xi
> 0 and thus,

Φxi > 0. From (4), it follows that in equilibrium,

u∗i =
X∗

r + X∗
q∗i −

ci(x∗i )
r + X∗

(A-35)

=
x∗i

r + X∗
−

ci(x∗i )
r + X∗

∝ x∗i −
c(x∗i )

ai

= f (X∗, r, ai)−
c( f (X∗, r, ai))

ai
.

Recall from (A-17) that fai > 0 when Φxi > 0. Hence, given X∗, we find

∂u∗i
∂ai

∝ [1− c′i( f (.))]︸ ︷︷ ︸
(+)

fai︸︷︷︸
(+)

+
c(.)
a2

i
> 0, (A-36)

where 1− c′i( f (.)) > 0 by (12). From (A-36), the utility ordering in part (b) is imme-
diate.

Proof of Proposition 4. We prove the results for each intrinsic project.

(a) Consider an intrinsically easy project: c′′′ ≤ 0 and thus Φxi < 0, where Φ =

Φ(xi, X, r) is as defined in (A-5). Below we show that (i) ∂X∗
∂ai

> 0 for all i, (ii)
∂x∗i
∂aj

> 0 for i 6= j, and (iii) ∂X∗
∂r > 0.

9



(a-i) Differentiating h(X∗, r, a) = 0 in (A-22) with respect to ai reveals

∂X∗

∂ai
= −hai

hX
= − fai(., ai)

hX
> 0,

since hX > 0 by (A-23) and fai(., ai) < 0 by (A-17) when Φxi < 0.

(a-ii) Given x∗i = f (X∗, r, ai) and fX(., ai) > 0 by (A-21), we find

∂x∗i
∂aj

= fX(., ai)
∂X∗

∂aj
> 0 for i 6= j. (A-37)

(a-iii) Using (A-10), the first-order condition in (A-11) for agent i can be rewritten as

XΦ(xi, X, r) = rai. (A-38)

Differentiating both sides of (A-38) with respect to r and re-arranging terms
yield

x′i +
(

xiΦ + c′X
xiX

)
︸ ︷︷ ︸

≡Ti

X′

Φxi

=
ai

xiΦxi

(
xi

X
− c′

ai

)
︸ ︷︷ ︸

=qi−c′i

. (A-39)

where we let x′i ≡ ∂xi/∂r and X′ ≡ ∑ x′i here for convenience. Hence, summing
both sides of (A-39) across agents, we obtain

X′
(

1 + ∑
i

Ti

Φxi

)
= ∑

i

ai
(
qi − c′i

)
xiΦxi

. (A-40)

Since Φxi < 0, and qi − c′i = ui > 0 by (12),

X′ > 0⇐⇒
(

1 + ∑
i

Ti

Φxi

)
< 0. (A-41)

Substituting for Φxi from (A-19) and Ti from (A-39) into (A-41) reveals

X′ > 0⇐⇒∑
i

xiΦ + c′X
X (Φ + c′ − (r + X)c′′)

> 1. (A-42)

First, observe that since c′′ > 0,

Zi ≡ xiΦ = (r + X)c′ − c > 0. (A-43)
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Next, observe that multiplying both the numerator and denominator by xi, we
can rewrite (A-42) as

X′ > 0⇐⇒ Ω ≡∑
i

(
Zi + c′X

Zi + xic′(xi)− xi(r + X)c′′

)
︸ ︷︷ ︸

≡Yi

xi

X
> 1. (A-44)

Note that Yi > 1 because Zi + c′X > 0 and

Zi + xic′ − xi(r + X)c′′ =
[
(r + X)c′ − c

]
+ xic′ − xi(r + X)c′′

> (r + X)c′ − xi(r + X)c′′

= (r + X)
(
c′ − xic′′

)
≥ 0.

where the second line follows from c
xi
< c′ since c′′ > 0, and the last line follows

from c′
xi
≥ c′′ since c′′′ ≤ 0. Therefore, as desired,

Ω = ∑
i

Yi
xi

X
> ∑

i

xi

X
= 1.

(b) Consider an intrinsically difficult project: (A-9) or equivalently, Φxi > 0 holds.
Below we show that (i) ∂X∗

∂ai
> 0 for all i, (ii) ∂x∗i

∂aj
< 0 for i 6= j and ∂x∗i

∂ai
> 0, and

(iii) ∂X∗
∂r > 0.

(b-i) Recall from (A-16) that fX(., ai) < 0 for all i when Φxi > 0. Thus, from (A-23),
hX = ∑ fX(., ai)− 1 < 0. Recall also that, when Φxi > 0, we have fai(., ai) > 0
from (A-17). Differentiating h(X∗, r, a) = 0 in (A-22) with respect to ai, therefore,
yields

∂X∗

∂ai
= −hai

hX
= − fai(., ai)

hX
> 0.

(b-ii) From x∗i = f (X∗, r, ai), we obtain

∂x∗i
∂aj

= fX(., ai)
∂X∗

∂aj
< 0. (A-45)
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Furthermore,

∂x∗i
∂ai

= fX(., ai)
∂X∗

∂ai
+ fai(., ai) (A-46)

= fX(., ai)

(
− fai(., ai)

hX

)
+ fai(., ai)

= fai(., ai)

(
1− fX(., ai)

hX

)
.

Since hX < 0 and fai(., ai) > 0, we observe from the last line in (A-46) that

∂x∗i
∂ai

sign
= 1− fX(., ai)

hX

sign
= fX(., ai)− hX.

Given hX = ∑j fX(., aj)− 1 < 0 and fX(., aj) < 0, it follows that

∂x∗i
∂ai

sign
= 1−∑

j 6=i
fX(., aj) > 0. (A-47)

(b-iii) Since Ti > 0 by (A-39) and qi − c′i = ui > 0 by (12), we observe from (A-40) that
∂X∗
∂r > 0 since Φxi > 0.

Proof of Lemma 3. Suppose ai = a for all i. Then, by Proposition 1, there is an
(interior) equilibrium, which must be symmetric. That is, x∗i = x∗ = f (X∗, r, a) > 0
and q∗i = 1

n for all i.31 In addition, (9) implies that x∗ uniquely solves

c′(x∗)(r + nx∗)− c(x∗) =
ra
n

. (A-48)

Next, the uniqueness in Lemma 1 implies that xS
i = xS > 0. Hence, simplifying (5),

xS uniquely solves

max
x

W(x; a, r) ≡ nx− nc(x)/a
r + nx

.

Differentiating the welfare with respect to x, we obtain

∂

∂x
W(x; .) =

arn− nc′(x)(r + nx) + n2c(x)
a(r + nx)2 . (A-49)

31By Proposition 1, the equilibrium is also unique when the project is intrinsically easy or intrinsi-
cally difficult, but the equilibrium uniqueness is not needed in this proof.
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Note that

∂

∂x
W(x; .)

∣∣∣∣
x=x∗

∝ ar− c′(x∗)(r + nx∗) + nc(x∗)

= ar− ra
n
− c(x∗) + nc(x∗)

=

(
1− 1

n

)
ar + (n− 1)c(x∗)

> 0,

where the second line employs (A-48). Hence, x∗ < xS.
Proof of Proposition 6. Consider a two-member team with abilities a1 > a2, and

fix r and a2. To prove part (a), suppose that the project is intrinsically easy. Then, by
Proposition 2, x∗1 < x∗2 . Moreover, x∗2 < ∞ by (12). Next, we show that x∗1 → 0 as
a1 → ∞. From the first-order condition in (9), note that

c′(x∗1)(r + X∗)− c(x∗1) = rq∗1a1. (A-50)

Clearly, the left-hand side of (A-50) is finite, but its right-hand side would grow un-
bounded as a1 → ∞ if x∗1 9 0 and thus q∗1 9 0. Hence, x∗1 → 0, which implies q∗2 → 1
and in turn, x∗2 9 0. To compare with the social optimum, recall from Lemma 1 that
0 < xS

2 < xS
1 , and by (A-1),

c′(xS
1 )

a1
=

c′(xS
2 )

a2
= zS ∈ (0, 1). (A-51)

Suppose that zS 9 0 as a1 → ∞, which would imply xS
2 9 0. But inspecting (5),

it is clear that the planner could do strictly better by shifting the effort xS
2 to agent

1. Hence, zS → 0 and thus xS
2 → 0. Moreover, xS

1 9 0. Together, we conclude that
x∗1 < xS

1 and x∗2 > xS
2 for a sufficiently large a1.

To prove part (b), suppose that the project is intrinsically difficult. Then, x∗2 < x∗1 .
Moreover, since ci(xi) =

xi
k c′i(xi) for the iso-elastic cost, (9) reveals

c′i(x∗i ) =
rq∗i

r + X∗ − x∗i
k

(A-52)

=
rx∗i(

r + X∗ − x∗i
k

)
X∗
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and in turn, c′2(x∗2) < c′1(x∗1). For part (b), it, therefore, suffices to show that c′2(x∗2) <
zS < c′1(x∗1).

To the contrary, suppose that zS ≤ c′2(x∗2). Then, xS
2 ≤ x∗2 and xS

1 < x∗1 by (A-51)
since c′′i > 0. From the first-order conditions (7) and (9), this implies

rq∗1 = c′1(x∗1)(r + x∗1 + x∗2)− c1(x∗1) > c′1(xS
1 )(r + xS

1 + xS
2 )− c1(xS

1 ) = r + c2(xS
2 ),

(A-53)
because c′i(xi)(r + xi + xj)− ci(xi) is strictly increasing in xi. Hence, rq∗1 > r + c2(xS

2 )

and in turn, q∗1 > 1, a contradiction.
Next suppose, to the contrary, that c′1(x∗1) ≤ zS for a sufficiently large a1. Then,

x∗2 < xS
2 and x∗1 ≤ xS

1 , implying X∗ < XS. By the iso-elastic cost, ci(xS
i ) =

xS
i
k c′i(xS

i ) =
xS

i
k zS. Inserting this fact into (7), we obtain

zS =
r

r + XS − XS

k

. (A-54)

Using (A-52) and (A-54), we observe

c′1(x∗1) ≤ zS ⇐⇒
rx∗1(

r + X∗ − x∗1
k

)
X∗
≤ r

r + XS − XS

k

⇐⇒ x∗1 ≤
X∗(r + X∗)

r + XS − XS

k + X∗
k

. (A-55)

We now claim that x∗1 ≈ X∗ for a sufficiently large a1. To prove, suppose that x∗1 9
∞ as a1 → ∞. Then, the left-hand side of (A-50) is finite, but its right-hand side
would grow unbounded since q∗1 9 0. Hence, x∗1 → ∞, which implies that q∗1 → 1
(since x∗2 < ∞) and x∗2 → 0, proving the claim. Plugging x∗1 ≈ X∗ into (A-55) and
simplifying terms, we find that XS ≤ X∗, a contradiction.

As a result, c′2(x∗2) < zS < c′1(x∗1) for a sufficiently large a1, and in turn,

x∗2 < xS
2 and x∗1 > xS

1 by (A-51), as desired.

Proof of Lemma 4. As discussed in the text, every equilibrium under solo work
must be interior since ∂ûi

∂xi

∣∣∣
xi=0

= 1
r+X > 0, so we restrict attention to xi > 0 and
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X > 0. Moreover, substituting the first-order condition (17) into (16) and simplifying
terms, we observe that in equilibrium,

ûi = 1− c′i(xi) > 0. (A-56)

(In equilibrium, ûi > 0 because agent i would otherwise choose xi = 0). Hence, in
equilibrium,

xi < c′−1(ai).

Next, given X−i = X− xi, we define

Λ(xi, X, r, ai) = c′i(xi)(r + X)− ci(xi) + xi − X,

so that (17) becomes
Λ(xi, X, r, ai) = r. (A-57)

Proceeding as in the proof of Proposition 1, fix X and note that

Λ(0, X, r, ai) = −X < 0 and Λ(X, X, r, ai) = c′i(X)(r + X)− ci(X) > 0.

Moreover, ΛX = −
[
1− c′i(xi)

]
< 0. Hence, (A-57) admits a unique solution:

xi = f̂ (X, r, ai) (A-58)

if and only if
Λ(X, X, r, ai) ≥ r. (A-59)

Since Λ(0, 0, r, ai) = 0 and dΛ(X, X, r, ai)/dX = c′′i (X)(r + X) > 0, (A-59) is satisfied
if and only if

X > Xi

where Xi > 0 is the unique cutoff such that f̂ (Xi, r, ai) = Xi.
Now note that summing up (A-58) across agents, the equilibrium total effort X

must solve
ĥ(X, r, a) ≡∑

i
f̂ (X, r, ai)− X = 0.

Clearly, since f̂ (Xi, ai, r)− Xi = 0,

ĥ(min
i

Xi, r, a) > 0 and ĥ(max
i

c′−1(ai), r, a) < 0.
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Hence, by continuity, there is a solution to

ĥ(X, a, r) = 0,

which constitutes an equilibrium by (A-58).
To prove the rest of the proposition, we first implicitly differentiate (A-57), namely

Λ( f̂ (X, r, ai), X, r, ai) = r, and find that

f̂ai(., ai) = −
Λai

Λxi

> 0, (A-60)

since Λai = −
c′i(xi)(r+X)−ci(xi)

ai
< 0 and Λxi = c′′i (xi)(r + X) + 1− c′i(xi) > 0.

Next let a1 > a2 for some i = 1, 2. Then, (A-60) implies

xL
1 = f̂ (XL, r, a1) > f̂ (XL, r, a2) = xL

2 .

Finally, to show ûL
1 > ûL

2 , note that

ûL
1 = max

x1

x1 − c1(x1)

r + x1 + XL
−1

>
xL

2 − c1(xL
2 )

r + xL
2 + XL

−1

>
xL

2 − c2(xL
2 )

r + xL
2 + XL

−2

= ûL
2 ,

where the second line follows by the optimality of xL
1 and the third line follows be-

cause (1) XL
−1 < XL

−2 given xL
1 > xL

2 and (2) c1(x) < c2(x) given a1 > a2.
Proof of Proposition 7. Suppose ai = a for all i. Under both team- and solo work,

the (interior) equilibrium must be symmetric. That is, in teamwork, x∗i = x∗ > 0 and
q∗i = 1

n , reducing the first-order condition in (9) to

c′(x∗)(r + nx∗)− c(x∗) =
ra
n

.

Let limr→0 x∗ = x∗` , which must satisfy

c′(x∗` )nx∗` − c(x∗` ) = 0. (A-61)
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If x∗` > 0, then the left-hand side of (A-61) would be strictly positive since c′′ > 0,
yielding a contradiction. Hence, x∗` = 0 and in turn, by (12),

lim
r→0

u∗ =
1
n

.

Next, consider the solo work. By symmetry, xL
i = xL > 0, and the first-order

condition in (17) becomes

c′(xL)(r + nxL)− c(xL) = ra + (n− 1)axL

As r → 0, it further becomes

c′(xL
` )nxL

` − c(xL
` ) = (n− 1)axL

` . (A-62)

Clearly, xL
` = 0 is a solution to (A-62) since c′(0) = c(0) = 0, but it would not

constitute an equilibrium because ∂ûi
∂xi

∣∣∣
xL=0,r=0

= 1
r+XL

∣∣∣
xL=0,r=0

= ∞. Hence, we look

for a positive solution, xL
` > 0. To this end, divide both sides of (A-62) by xL

` :

c′(xL
` )n−

c(xL
` )

xL
`

= (n− 1)a. (A-63)

As xL
` → 0, the left-hand side of (A-63) approaches 0 (since c′(0) = 0) whereas

the right-hand side remains (n − 1)a > 0. Moreover, as xL
` → ∞, the left-hand

side of (A-63) grows unbounded because of the cost assumption (C3) above, i.e.,
limx→∞

c(x)
xc′(x) < 1, and the fact that c′′ > 0, which, again, are satisfied by the iso-

elastic cost. Hence, there is a positive solution to (A-63), i.e., xL
` > 0. Finally, note

from (A-63) that c′(xL
` )/a = n−1

n +
c(xL

` )/a
nxL

`

, and from (A-56), we observe that

lim
r→0

ûL = 1− c′(xL
` )/a

= 1−
[

n− 1
n

+
c(xL

` )/a
nxL

`

]

=
1
n
−

c(xL
` )/a

nxL
`

< lim
r→0

u∗.
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Proof of Proposition 8 . (21) is obtained by solving (14) and (20) for qSL
i . For part

(a), note that

qSL
i <

r + ∑` 6=i xS
` c′`(xS

` )

r + ∑` 6=i xS
`

=
r + zSXS

−i

r + XS
−i

< 1,

where the first inequality follows since c′′(x) > 0; the second equality and the third
inequality follow since c′`(xS

` ) = zS ∈ (0, 1) for all ` = 1, ..., n from the proof of Lemma
1 and X−i = ∑` 6=i x`.

For part (b), take the iso-elastic specification: c(x) = xk

k . Then, c′`(xS
` ) =

xS
`
k c′`(xS

` )

and, in turn, c′`(xS
` ) =

xS
`
k zS. From here, (21) simplifies to

qSL
i =

r + zS

k XS
−i

r + XS
−i

.

Note that zS

k ∈ (0, 1) since k > 1 and zS ∈ (0, 1). Thus, qSL
i is strictly decreasing in

XS
−i. Next, note that for ai > aj, we have XS

−i < XS
−j since xS

i > xS
j by Lemma 1.

Hence, qSL
i > qSL

j for ai > aj. Finally, employing (20), (19) implies

ûSL
i = qSL

i − c′i(xS
i ) = qSL

i − zS,

which, in turn, implies that ûSL
i > ûSL

j for ai > aj.
Proof of Proposition 9 . The result is immediate from (12) and (19) since qSL

i <

1 < qST
i and x∗ = xS = xL.
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