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Abstract

This paper aims at quantifying the economic value of knowledge spillovers by

exploring information contained in patent citations. We estimate a market valuation

equation for semiconductor firms during the 1980s and 1990s, and find an average

value in the amount of $0.6 to 1.2 million “R&D-equivalent” dollars for knowledge

spillovers embodied in one patent citation. For an average semiconductor firm, such

an estimate implies that the total value of knowledge spillovers the firm received

during the sample period could be as high as half of its actual total R&D expen-

ditures in the same period. This provides a direct measure of the economic value

of social returns or externalities of relevant technological innovations. We also find

that the value of knowledge spillovers declines as the size of firm’s patent portfolio

increases, and that self citations are more valuable than external citations, indicating

a significant amount of tacit knowledge or know-how spillovers that occur within the

firm.
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1. Introduction

Knowledge spillovers among different economic units are one of the most intriguing aspects

of technological innovations and are of great importance for public policy making. Numer-

ous studies have analyzed the patterns and effects of such spillovers, at both microeconomic

and macroeconomic levels (for instance the endogenous growth theory by Romer (1986) and

Grossman and Helpman (1991)). However, we still know very little about how to quantify the

economic value of such spillovers.1 This study, by exploring firm-level data on patents, patent

citations, R&D, and firm values, seeks to provide some answers.

We use the number of patent citations to measure the amount of knowledge flows. Patent

citations, by identifying the previous relevant technologies on which the current patented tech-

nology builds, convey important information on knowledge spillovers that the current inventor

has received from the earlier inventors. A number of authors have used patent citations to ex-

plore spillovers across geographical locations (Jaffe, Trajtenberg, and Henderson (1993)), among

firms in a research consortium (Ham, Linden, and Appleyard (1998)), and spillovers from pub-

lic research facilities to the whole economy (Jaffe and Trajtenberg (1996), Jaffe and Lerner

(2001)). This study proceeds along this line of approach and tries to quantify such spillovers in

terms of monetary value, in an attempt to directly evaluate the social returns or externalities of

technological innovations as identified by previous studies.

The quantitative analysis of this paper is conducted in a Tobin’s q framework. A firm’s knowl-

edge assets are modeled as being accumulated in a continuously ongoing innovative process in

which R&D expenditures reflect innovative input, patents record the successful innovations that

can be appropriated by the firm, and citations received by the firm’s patents (forward citations)

measure the relative “importance” of the patents. The extension and fresh contribution of this

study is to include the citations made by the firm’s patents (backward citations) as a proxy of

the knowledge flows the firm has received, which are considered an additional type of innovative

input besides direct R&D spendings on the belief that more knowledge inflows increase the firm’s

knowledge stock and may boost the firm’s R&D productivity.

Instead of a general analysis on all technology fields and industries aggregated, this study

focuses on a narrowly defined industry, the semiconductor industry (Standard Industrial Classi-

1Trajtenberg (1990) estimates the social surplus from innovations in CT scanners technology based on a

discrete-choice model, and finds high correlations between patent citations and the estimated social surplus.
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fications or SIC code 3674). While analyzing an aggregate sample of different technology fields

provides a broader picture, focusing on one industry allows more intensive and thorough exami-

nation of the technological competition and diffusion processes (for instance, it allows us to look

into the difference between "within industry" diffusion and "between-industry" diffusion, which

an aggregate analysis cannot do). The semiconductor industry is chosen because of the strategic

importance of knowledge assets and the intensive R&D activities in this industry. Moreover,

technological innovations in the semiconductor industry have been the focus of several recent

studies, including Megna and Klock (1993)’s work on R&D, patent stocks and Tobin’s q, Ham,

Linden, and Appleyard (1998)’s study on knowledge spillovers in the research consortia in this

industry, and Hall and Ziedonis (2001)’s extensive analysis of the shift in patenting preferences

of semiconductor firms in the early 1980s. Our quantitative study on the economic value of

knowledge spillovers in this industry based on patent citations data complements these previous

studies and has a direct bearing on the existing literature.

We analyze patenting behavior and market valuations of the universe of 120 semiconductor

firms publicly traded in the U.S. during the 1980s and 1990s, and find a significant and positive

monetary value for knowledge spillovers. In particular, model estimation reveals an average

value in the amount of $0.6 to 1.2 million “R&D-equivalent” dollars for knowledge spillovers

embodied per patent citation, implying that the total value of knowledge spillovers a median-

sized semiconductor firm received during the sample period could be as high as half of its actual

total R&D expenditures in the same period. This provides a direct measure of the economic

value of social returns or externalities of relevant technological innovations. We also find that

the value of backward citations declines when the size of the firm’s patent portfolio increases,

and that citations are more valuable for firms entering the semiconductor industry after 1982. In

addition, estimation results suggest that technological competition in this industry can be quite

intense so that firms are unable to use patents to build and keep a leading position that is strong

enough to effectively deter challengers. Finally, self citations are found to be substantially more

valuable than external citations, indicating a significant amount of tacit knowledge or know-how

spillovers that occur within the same firm.

The rest of the paper is organized as follows. Section 2 pictures the relationship between

patent citations and knowledge spillovers, section 3 specifies the market value equation to be

estimated, and section 4 describes the data. Section 5 presents the empirical results, and section
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6 concludes.

2. Patent Citations and Knowledge Spillovers

Patent Citations as Indicators of Knowledge Spillovers

A patent grants it owner an exclusive right for the commercial use of the patented invention

for a pre-determined period of time (20 years in the U.S.). Upon patent approval, a public

document is created containing detailed information on various aspects of the invention and

the inventor(s), including “references” or “citations.” The citations serve an important legal

function of delimiting the scope of the property right granted to the patent owner, since the

patent only protects the exclusive use of the “novel and useful contribution over and above the

previous state of knowledge, as represented by the citations” (Jaffe, Trajtenberg, and Henderson

1993, pp. 580). Thus, the cited patents represents a piece of previously existing knowledge upon

which the citing patent builds, and over which the citing patent cannot have a claim. The patent

applicant has a legal duty to disclose any knowledge of prior art, although the patent examiner

will make the final decisions on which previous patents to be included in citations.2

The fact that patent citations reveal the “prior art” the inventor has learned makes them

potential measure of knowledge spillovers from past inventions to the current invention. Un-

doubtedly, there is substantial noise in using patent citations to measure knowledge spillovers. To

assess the validity of this analysis, let us first examine the relationship between patent citations

and knowledge spillovers more carefully. There are three possibilities: spillovers accompanied

by citations, citations that occur where there is no spillover, and spillovers that occur without

generating a citation (Jaffe, Trajtenberg, and Henderson 1993). The validity of this empirical

analysis relies on the first one. So the key question here is whether and to what extent the other

two possibilities may affect the evaluation of spillovers.

2As noted by Jaffe, Trajtenberg, and Henderson (1993), one should be careful in making analogy between

patent citations and academic article citations: the price of making an academic citation is almost zero or even

negative if a long list of references may make the research papers seem more solid and thorough. However, under

the patent system, the more citations a patent applicant makes, the less novelty or significance he is able to claim

over his invention. Therefore, the patent applicant may have an incentive to under -cite rather than over -cite the

precedents, and the patent examiner will use his expertise to identify the ones neglected by the applicant. On

the other hand, even if the inventor did cite some irrelevant patents in the application (which is rare given his

incentives), the examiner should exclude them in the final grant.
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A recent survey study of inventors provides some direct evidence. Jaffe, Trajtenberg, and

Fogarty (2000) interviewed approximately 160 patent owners with questions about their inven-

tions, the relationship of their patents to the patents they cited, as well as the relationship to

other patents that were technologically similar to the cited patents but not cited. The study con-

cludes that about half of the citations correspond to some knowledge flows from the cited patents

to the citing patents, and the other half does not seem to correspond to any kind of knowledge

flow between them. This confirms that citations do contain important information about knowl-

edge spillovers (“spillovers accompanied by citations”), but with a substantial amount of noise

(“citations that occur where there is no spillover”). This implies that the estimated value of

patent citations will reflect a lower bound of the economic value of knowledge spillovers.34

Meanwhile, there are an enormous amount of spillovers not reflected in patent citations,

since only a fraction of research output is patented (“spillovers that occur without generating

a citation”). For instance, results from basic research are seldom patented, although they may

generate huge amount of spillovers. Thus, our estimation results are more relevant to the applied

research than basic research, and imply a lower bound of the total value of spillovers received by

the whole industry. On the other hand, as R&D projects in the semiconductor industry are more

oriented toward applied rather than basic science and technology, especially the ones funded and

owned by private firms as in my sample, our estimates of spillovers within the semiconductor

industry will suffer less from bias of this kind.

Knowledge Spillovers Within and Beyond Firm and Industry

In the following empirical analysis we classify patent citations into three groups: citations

occuring within the same firm (self citations), external citations to other semiconductor patents,

and citations to non-semiconductor patents. Such distinction is made because the economic

value of each type of citations may be different, for the following two reasons:

3 In principle, such a “proxy variable” problem could be solved by conducting an instrumental variables (IV)

estimation and general point estimates of the value could be obtained. However, we are short of reliable instrument

variables for backward citations (ideal instrumental variables should be highly correlated with knowledge spillovers

but not with citations measurement errors). Thus we do not pursue this approach in the current analysis.
4Royalty payments from unilateral licensing agreements apparently provide another possible estimate of the

lower bound of knowledge spillovers between firms. But such data are not readily available. Moreover, it is the

cross-licensing agreements that are prevalent in the semiconductor industry, in which no net royalty payment is

made.
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First, the content and thus the economic value of knowledge transfer as represented by each

type of citations may be different. When applying for a patent, the inventor has some discretion

over how to codify and disclose the new knowledge (Arora and Fosfuri 1998). He may choose not

to disclose every piece of the new knowledge and keep part of it “tacit,” in order to discourage

potential followers in the same or similar technological areas (or imitators when the patent

protection is not perfect). Therefore a self citation reflects an internal transfer of both the

codified and the tacit knowledge (“know-how”), while an external citation to another firm may

only indicate a transfer of codified knowledge but not know-how, and the difference between the

estimated value of internal and external citations may reveal the value of know-how transfers.5

Secondly, in the process of sequential innovation in the same narrow technology field, suc-

cessive inventors compete away each other’s excess returns (Scotchmer 1991). In that sense, a

self citation would imply that the firm is now gaining a more competitive position in that field,

while an external citation to another semiconductor patent may suggest that the citing firm

is entering a technological competition where the cited firm might has already built a strong

competitive position. On the other hand, the knowledge flows from a non-semiconductor patent

(as embodied in an external citation to that patent) may have much weaker implications on

the technological competition, because the cited patent is in a different technology field. Thus

making distinctions between these two types of citations may shed light on the intensity of

technological competitions in the semiconductor industry.

3. Model Specification

Consider the following market valuation equation from Griliches (1981):

Vit = qt(Ait + bKit)
σ (3.1)

where Vit denotes firm i’s stock-market value in year t, Ait the book value of its physical assets,

and Kit the knowledge assets. qt represents the shadow value of firms’ assets, and the coefficient

5This distinction is somehow obscured by the knowledge transfers between different firms in a cross-licensing

agreement or between collaborators within the same research consortium, which are prevalent in the semiconductor

industry. It is likely that on such occasions not only the codified knowledge but also some tacit knowledge are

shared. Therefore, some observed patent citations between different semiconductor firms may also include a

know-how transfer. However, there has not been a reliable and complete record of all the semiconductor firms

involved in such cross-licensing agreements or research consortia.
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b measures the shadow value of knowledge assets relative to physical assets. σ measures the

scale effects in the value function and is often assumed to be one.

Taking logarithm of equation (3.1) yields

log Vit = log qt + σ logAit + σ log(1 + b
Kit

Ait
) (3.2)

When the value function exhibits constant returns to scale (which holds approximately in the

cross section), we have the following estimation equation:

logQit = log(
Vit
Ait
) = log qt + log(1 + b

Kit

Ait
) + εit (3.3)

where Qit denotes Tobin’s q. εit represents the prediction errors.

There is little guidance in theory on the specification of knowledge assets Kit. Accumulated

knowledge spillovers into the firm directly increase the firm’s knowledge base and boost the firm’s

R&D productivity, thus the accumulated backward citations, as a proxy of spillovers, should be

included. On the other hand, literature has found that accumulated R&D spendings are quite

effective in predicting the market value of firms. This is not surprising, as accumulated R&D

spendings measure the past efforts the firm has made in inventive activities, and even if some

of the R&D projects turn out to be “dry holes,” the spendings on those projects still increase

the firm’s knowledge assets through building firm’s know-how. Therefore the accumulated R&D

expenditures should also be included.

In addition, there is a high degree of heterogeneity in the R&D productivity across different

firms. This heterogeneity also should be taken into account, because the market will use infor-

mation on firm’s R&D productivity to evaluate its knowledge assets. A natural choice of R&D

productivity measure is the number of patents owned by the firm, as patent counts indicates the

“success” of R&D projects and thus the patent/R&D ratio measures R&D productivity, similar

to an output/input ratio (Scherer 1965, Griliches 1984, among others). However, the quality and

value of different patents vary a lot, and raw patent counts simply ignores this heterogeneity.

Hall, Jaffe and Trajtenberg (2005) (hereinafter HJT (2005)) suggest using number of forward

citations (citations received by the patent) to weigh patent counts and refine this measure, as a

more frequently cited patent is technologically more important and potentially more valuable.

Thus, the market is assumed to use the following value function to evaluate the firm’s

knowledge assets

Kit = f(R&Dit, BCITit, ωit) (3.4)

6



where R&Dit denotes the accumulated R&D spendings, BCITit the accumulated backward

citations the firm has made as a proxy of the knowledge inflows received by the firm, and ωit

the accumulated idiosyncractic productivity shocks in the firm’s inventive activities.

Taking first-order Taylor expansion of equation (3.4) yields

Kit = f1 ∗R&Dit + f2 ∗BCITit + f3 ∗ ωit (3.5)

As there is no directly observable measure of the idiosyncractic productivity shocks ωit, we

proxy it by the patent/R&D ratio, weighed by average number of forward citations the firm’s

patents receive over their entire lives (30 years after applications). This could be viewed as an

approximate measure of the output-input ratio in firm’s R&D production.

Thus equations (3.3) and (3.5) imply the following basic estimation equation

logQit = log qt + log(1 + b1
R&Dit

Ait
+ b2

BCITit
Ait

+ b3
PATit
R&Dit

+ b4
FCITit
PATit

) + εit (3.6)

where PATit and FCITit are firm i’s patent stock and forward citation stock in year t. Here b2

represents the value of knowledge flows brought by an additional backward citation, and b2/b1

is a direct measure of the monetary value of knowledge spillovers in terms of “R&D equivalent

dollar.” A full model estimation will further categorize the backward citation stock into stocks

of self citations, external citations to other semiconductor patents, and external citations to

non-semiconductor patents, as discussed in Section 2.

4. Data

Empirical estimation is based on the universe of 120 semiconductor firms publicly traded in

the U.S. during 1979 to 1998. The final estimation sample only include firms whose primary

business is in SIC 3674 (semiconductors and related devices). Conglomerates whose principle

products are not semiconductors such as IBM, AT&T are excluded – although these firms are

heavy users and important owners of semiconductor patents, we are unable to observe the R&D

resources primarily devoted to semiconductor-related R&D projects by them, nor the market

valuation of their semiconductor sector.

The sample is constructed by combining information from two data sources. For market

valuation of firms we use the popular Compustat database. As market value and book value

of the firms are readily available in Compustat, the calculation of Tobin’s q is quite easy and
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straightforward. R&D expenditures, based on which R&D stocks are constructed, are also

obtained from Compustat.

For patent and patent citations, we use the U.S. Patent Citations database, recently con-

structed by Hall, Jaffe, and Trajtenberg (2001). The database keeps a complete record of

citations made by each U.S. patent upon approval since 1975, as well as other patent character-

istics such as application date, approval date, and detailed International Patent Classification

(IPC) code describing the technological classifications of the patent. For the purpose of this

study, we first identify all the patents owned by each of the 120 semiconductor firms,6 and for

each patent we count the backward and forward citations in each year; then aggregate them on

firm level to construct patent stocks as well as backward and forward citation stock.

Dealing with Truncation7

There are two kinds of data truncation problems that one may encounter in constructing the

patent and patent citation stock. The first involves patent counts and backward citation counts.

There is substantial time delay in the granting of patents: the average and median length of

patent application review in the U.S. are approximately two years. Therefore, for the last two

years of the Patent Citations database (which ends in 1999), one can only observe a fraction of

all the patents that will finally be granted, as many of them were still being examined by the

end of 1999 and were therefore not included in the database. In the estimation we solve this

problem by focusing on a sample period that ends in 1995 – a preliminary look of the U.S.

semiconductor patents indicates that, over the past three decades, 95% of the grant decisions on

these patents were made within three years since the initial applications, and within four years

more than 98% of the decisions were reached. Our selection of sample period guarantees that,

even for the last year of the sample, at least 98% of the granted patents and backward citation

counts are included, and thus keeps this truncation problem to a minimal degree.8

6Because the patent assignees obtain patents under a variety of names, and the US PTO does not keep a

unique identifier for each patenting organization, we have performed an extensive name-matching exercise to

identify the patent assignees in the citation database and link them to the firm names in the Compustat. The

subsidiary relationship is identified according to the Directory of Corporate Affiliations, and keeps track of major

mergers-and-acquisitions events according to the CRSP database.
7For details please refer to the appendix in dealing with the truncation problem on patent citations data as

well as in constructing the patent citations stocks.
8 In fact, at the beginning of the sample period one may also encounter some truncation problem regarding

patent counts and backward citation counts: as the U.S. PTO did not begin to keep records of patent ownership
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The second truncation problem involves forward citation counts and is due to the time lag

in observing forward citations. Such lags can be very long, as it is not unusual for a patent to be

cited 10 or even 20 years after its initial application. Since the Patent Citations database ends

in 1999, it only has a truncated record of forward citations: for instance, for a patent belonging

to cohort 1985 (i.e., patents with application submitted in 1985), we are only able to observe

14 years of its forward citations history, and for a 1995 patent, only 4 years.9 To address this

problem, we estimate a citation-lag model, and then project the number of forward citations

each patent would receive for the years not observed in the database, up till 30 years after their

initial applications. The details of the citation-lag model estimation and projection are laid out

in the appendix.

A by-product from estimating the structural citation-lag model is that we can parse out an

important time effect on the overall changes in citation practice since the mid-1970s. Preliminary

data analysis indicates that the average number of citations made by each patent in the sample

increased substantially during the sample period, from 3.9 in 1975 to 5.1 in 1985 and 10.1 in

1995. This increasing trend may not necessarily reflects a similar increase in the substance of

knowledge flows an average inventor receives, but rather partly due to some technical reasons.

For instance, with the development of machine-readable patent databases and more accessible

patent-searching tools over this period, patent attorneys and examiners are better equipped to

identify relevant previous patents in making citations. If so, this “citation inflation” would imply

that a typical backward citation indicates less amount of actual knowledge spillovers in 1990s

until 1969, all the patents that can be identified as owned by the 120 semiconductor firms in the sample were

granted after 1969 but none before. That is, for those firms who existed and possessed patents before 1969, their

patent stocks are under-estimated in the sample. However, the total number of semiconductor patents granted

before 1969 is quite small (for instance, only 372 semiconductor patents were granted in 1967 and 376 patents in

1968), and under an annual depreciation rate of 15%, the mis-measurement of the accumulated patent stock and

backward citations stocks for years after 1979 is tiny.
9What makes it worse is that, for relatively younger patents, most of their citing patents had not yet been

granted by 1999. For instance, for a 1996 patent, we only observe a fraction of total forward citations from cohort

1998 patents, as more than half of cohort 1998 had not been granted by 1999 and are thus excluded from the

database. So for this patent we only have a reliable citations record of the first year after its approval, at most.

This is another reason why we restrict the sample period to end in 1995, as 95% of cohort 1996 and 80% of cohort

1997 had been granted by 1999. Therefore even for the latest cited cohort in our sample (1995), we are still able

to observe at least a couple of years of reliable forward citations records, based on which we can then project the

life-long forward citation counts, as explained later.
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than in 1970s. We thus construct two samples, one “deflated” sample making adjustments for

this “citation inflation” (on both backward and forward citations) and one “undeflated” sample

without making such adjustments.

Construction of R&D, Patent and Patent citation stock

The construction of R&D stock is fairly straightforward, as it is simply accumulated past

R&D expenditures. Therefore,

R&Dit =

t−T0X
j=0

δj ∗ r&di,t−j (4.1)

where r&di,t−j is the R&D spendings by firm i in the year of t− j. δ is an annual depreciation

rate assumed to be a constant 15%, as in much of the literature (Hall (1990)). T0 is the beginning

of the database. The patent stock is defined in the same fashion.

Knowledge that the firm acquires in the past also depreciates over time. We depreciate the

number of patent citations according to the age of the cited patents (throughout the paper the

age of a patent is defined as the time elapsed since the patent application). For instance, if a

firm cites a 1975 patent in one of its 1980 patents, then the knowledge that the firm learned in

1980 from the 1975 patent was already 5 years old and needs to be discounted (subject to the

same 15% depreciation rate). As time goes by, the value of that piece of knowledge continues to

depreciate, and in 1990, it will be 15 years old and worth only 8.7% as a new citation made to

a 1990 patent. We then aggregate such accumulated backward citations over the firm’s patent

portfolio each year, and obtain the firm’s backward citation stock.

The forward citation stock measures the relative importance or value of the firm’s patent

portfolio. For each year, we aggregate over the entire patent portfolio the number of forward

citations received by each patent during its entire life (30 years since application), and discount

them according to the age of the patents. For instance, suppose the firm has one 1980 patent

and one 1985 patent which are projected to receive 10 and 8 citations during their entire lives,

respectively. Then in computing the forward citation stock for the firm in 1990, we would

discount forward citations received by the first patent by 10 years as 10 × 0.8510 = 1.97 and

those received by the second patent by 5 years as 8×0.855 = 3.55, so the entire forward citation
stock is 1.97+3.55 = 5.52 in 1990. In other words, we do not distinguish as to when the forward

citations arrive, but rather discount the sum of them according to how old the cited patent is.
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First look at the Sample

Market valuation of semiconductor firms can be quite volatile.10 To reduce the idiosyncractic

shocks especially from young start-up firms, we eliminate firms with less than three years of

complete observations in Compustat from the sample. We also delete several observations in

which Tobin’s q seems too high (greater than 10). This generates a sample of 64 firms (possessing

a total of 26,143 patents during the sample period) in an unbalanced panel, or 636 firm-year

observations.11 Table 1 presents some summary statistics of the estimation sample. The market

value and book value of the firms are extremely skewed to the right, with means several times

larger than medians. The skewness is even heavier for all the determinants of knowledge stocks

(R&D, patents, backward and forward citations), with means usually ten times larger than

medians or more. On the other hand, variables such as Tobin’s q, R&D stock/total assets,

backward citations/total assets, patents/R&D and forward citations/patents are much more

symmetrically distributed, with means usually only one times larger than medians or even less.

Finally, about 14 percent of all the firm-year observations have a zero patent stock. Therefore

we also construct another “patenting” sample of 545 firm-year observations whose patent stocks

are positive.

Table 1 also indicates that the mean and median of the projected lifetime forward citation

stock are several times larger than those of backward citation stock. This is surprising as in

the long run these two measures should be comparable. The discrepancy between them is

closely related to the rapid growth of the number of patents in the semiconductor industry since

the 1970s (both because of the rapid expansion of this industry and a shift in the patenting

preferences of semiconductor firms starting in the early 1980s (Hall and Ziedonis 2001)): even

if each patent makes the same number of backward citations over time, the average number of

forward citations received by each earlier patent may be much larger than the average number of

backward citations, simply because now there are more later patents citing earlier patents. This

10For instance, during the stock-market bubbles in the late 1990s, market values of semiconductor firms were

substantially blown up, in many cases by several times. This is another reason why we choose to let the sample

period end in 1995 and delete those young start-up firms, in order to minimize the distortions in market valuation

of the firms.
11The eliminated firms are either small start-ups short of three years of public-trading history or firms without

three years of complete trading data, or foreign firms, and they only possess a total of 1,789 patents during the

sample period.
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is another kind of “citation inflation” indicating that in an industry where the total number of

patents change substantially over time, the forward citation count is a more “noisy” measure of

technological or economic “importance” than in other industries.12 The distortion on backward

citation count, on the other hand, is quite small.

Top panel of Table 2 shows that R&D, patents, backward and forward citation stock are

highly correlated with each other, where the correlation between R&D and patent stocks is 0.83,

and that between backward and forward citations even higher. This is not surprising, since all

of them are different measures of knowledge stock. However, the correlations between different

regressors of the estimation equation such as R&D/total assets, backward citations/total assets,

patents/R&D, and forward citations/patents, are much lower (less than 0.5), indicating that

each of the regressors possesses independent information content and the colinearity problem is

not severe.

5. Estimation Results

The market value equation (3.6) and its variants are estimated using maximum likelihood esti-

mator. Year dummies are included to allow Tobin’s q to vary over time.

First take of model estimation

Table 3 displays the estimation results of equation (3.6) based on two samples: the top

panel uses all 636 firm-year observations and the bottom panel focuses on the 545 firm-year

observations with positive patent stock. For each sample we start by regressing the market

value on R&D stock, and then gradually add other regressors into the equation, one at a time.

This procedure facilitates the examination of the significance and marginal contribution of each

regressor. As discussed in Section 4, we make distinctions on whether “citation inflation” is

adjusted for when constructing the citation stock, and run separate estimations for each case.

All the coefficient estimates in Table 3 are positive and significant at the 5 percent level.

The likelihood ratio tests indicate that each regressors adds information on top of others, and
12Adding a time trend in the citation-lag model estimation, either a linear trend or some other kind of filtered

trend of the growth rate of patent number over time may help solve this problem. In this paper we do not pursue

this possibility, as the focus here is on knowledge spillovers proxied by the backward citations, which are much

less affected by this kind of distortion. Moreover, although this inflation on the number of forward citations tends

to decrease the average value of each forward citation, the distortion is much less on the total value of all the

forward citations that a patent receives.
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thereby has a significant contribution to the overall fit of the estimated model. In particular,

the coefficient estimate of backward citations/assets is significantly positive and is around 0.08

when citation inflation is not adjusted or 0.10 when citation inflation is adjusted in the top

panel, and even higher (0.12) in the “patenting sample” estimation as shown in the bottom

panel, suggesting a significant effect of knowledge spillovers on firm value. On the other hand,

most of the coefficient estimates are very similar in both panels, either with or without adjusting

for citation inflation. Therefore, in the later analysis we mainly focus on the patenting sample,

with citation stocks deflated.

Next we examine the quantitative impact of the regressors on market value using these

coefficient estimates. Consider the following semi-elasticity:

∂ logQ

∂(R&D / A)
= bb1(1 +bb1R&Dit

Ait
+bb2BCITit

Ait
+bb3 PATit

R&Dit
+bb4FCITit

PATit
)−1 (5.1)

which provides a rough estimate of the elasticity of Tobin’s q with respect to an increase in

R&D /A ratio (HJT 2005). We evaluate this elasticity around the mean and median value of

the regressors as in Table 1, based on the estimated coefficients in column (4) in the top panel (all

firms, with patent citations not deflated) and column (6) in the bottom panel (patenting firms,

with citations deflated) of Table 3. Elasticities with respect to changes in other regressors are

also calculated and displayed in Table 4. Calculations based on the other two sets of coefficient

estimates (column (6) in the top panel and (4) in the bottom panel of Table 3) are quantitatively

similar and thus not reported.

As shown in Table 4, a one-percentage point increase in R&D/assets ratio leads to a 0.1%

appreciation in the firm value. An increase in the firm’s R&D productivity, as measured by

one extra patent per million dollar R&D spendings, boost firm value by 6% to 7%, about three

times as high as the elasticity of 2% for all manufacturing sector as estimated by HJT (2005).

This is consistent with the strategic importance of patents in semiconductor industry (Hall and

Ziedonis 2001). A rise in the average quality of the firm’s patent portfolio also raises the firm’s

market value – if every patent receives one more forward citation over their entire lives (30

years since applications), the firm’s value will rise by about 0.3%.

Of particular interest to us is the impact of backward citations on firm value as it proxies the

value of knowledge spillovers. As displayed in Table 4, one extra backward citation per million

dollar of physical asset makes the firm about 5% more valuable, and the amount of appreciation

is even larger (7.5% to 9%) when the number of citations is deflated.
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Another way to quantify the value of spillovers is to calculate how much R&D spendings has

to be increased in exchange for one less backward citation, keeping the firm value unchanged

(bb2/bb1). Estimates in Table 3 indicates that this figure ranges between $0.6 million and $0.7
million (in 1998 value). This translates into a total value of about $12 million for a firm with

a median size of backward citation stock (about 20 as in Table 1), which is about half of the

accumulated R&D stock for a median firm ($26 million).

Controlling for Firm Characteristics

In Table 5 we control for several firm characteristics that may also affect firm value and

the value of knowledge spillovers. At first the logarithm of net sales of the firm is included to

examine the impact of firm size (columns (2) and (7)). We then also introduce a dummy on

whether the firm entered the industry after 1982 (“post-82 entrant”). As Hall and Ziedonis

(2001) points out, semiconductor firms that entered the industry after 1982 have a significantly

higher tendency to seek patent protection for their inventions than firms entering before 1982,

because of the more “pro-patent” legal environment (with the creation of Court of Appeal for

Federal Circuit in 1982 and other legal changes in the early 1980s such as the Semiconductor

Chip Protection Act in 1984). We also include another dummy for Texas Instruments Inc.

(“TI”), for its well-known strategy of aggressively pursuing for patent protection as well as its

large size of patent portfolio (the firm alone owns about 30% of all the patents in the sample).

Columns (2) and (7) of the table indicate a slightly positive premium for larger semiconductor

firms, although the premium is not statistically significant and diminishes when “TI” and “post-

82 entrant” are added (columns (3) and (8)). Texas Instruments has a significantly negative

premium on market value which lowers its Tobin’s q by about 20% to 25%. On the other hand,

firms entering the semiconductor industry after 1982 have a significantly positive premium, in

the amount of about 60% of the firm value.

In Table 5 we also interact log sales and “post-82 entrant” with backward citations/assets

and examine how differently knowledge flows are valued in different types of firms. Columns

(4) and (9) shows that knowledge flows are evaluated quite differently in regard to the timing

of firm’s entrance into the semiconductor industry. For older firms entering the industry before

1982, each backward citation is worth about $0.6 million “R&D equivalent dollars”, whereas for

those entering the industry after 1982, the value is about one and half times larger, at about

$1.4 million. In other words, younger firms are not only more prone to patenting (Hall and
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Ziedonis 2001), they also appear to benefit more from the knowledge spillovers.

Columns (5) and (10) show that the larger the firm’s size, the less valuable the backward

citations are. For instance, for a median-sized firm (with net sales around $110 million each

year), each backward citation is worth about $0.5 million or $1 million, depending on whether

citation stock is deflated, and for a firm whose net sales are at the top 25 percentile ($328 million

annually), each backward citation is only worth $0.06 million (column (10)) or less.

Because larger firms in semiconductor industry usually hold more patents, to single out the

true “firm-size” effect apart from “patent-portfolio size” effect, we next include in the estimation

equations the size of the firm’s patent portfolio (defined as raw count of patents that the firm

had ever acquired), and present the estimation results in Table 6. It is found that firms with

larger patent portfolio value backward citations less, as the coefficient estimate of BCIT/assets

interacted with patent portfolio size is significantly negative (columns (2) to (5) and (7) to (10)).

Moreover, the coefficient on net sales becomes insignificant, even when net sales is interacted

with BCIT/assets (columns (4) and (9)). This indicates that the “firm-size” effect on the value

of knowledge spillovers in Table 5 is indeed spurious and simply reflects a negative “patent-

portfolio size” effect and the fact that larger firms usually hold more patents. The positive

premium on the value of spillovers for post-82 entrants, however, remains significant (columns

(4), (5), (9) and (10)). Finally, when patent portfolio size is included in the equation, the

estimated coefficient of the dummy for Texas Instruments Inc. becomes positive because of the

huge number of patents the firm possesses.

Table 7 presents a direct look into how the estimated value of backward citations decline

as the size of patent portfolio increases. For firms with a patent portfolio size at the lowest

25 percentile (holding 8 patents), each backward citation is worth approximately $1.5 million

or $2.9 million depending on when the firm entered the industry; for firms with median-sized

patent portfolio (28 patents), the average value of backward citations is $0.4 million or $1.7

million; and for firms with a patent portfolio size at the top 25 percentile (holding 95 patents),

the average value is much less, lower than $0.6 million for post-82 entrants and even less for

firms entering the industry before 1982. This leads us to conclude that knowledge spillovers

are more valuable for younger firms with fewer patents, and for older firms with a large patent

portfolio, the unit value of knowledge inflows added on top of their already abundant knowledge

base is relatively smaller.

15



Spillovers within and beyond firm and industry

Finally we make distinctions between backward citations within and beyond firm and indus-

try, as they may differ in the amount of knowledge flows being carried (whether tacit knowledge

is included or not), and in the implications on technological competitions they may have. In

particular, we distinguish self citations (citations to other patents the same firm owns) from

external citations, and further divide external citations into two groups: citations to non-

semiconductor patents and those to semiconductor patents. Accordingly, two new variables

are constructed: non-semiconductor backward citation stock/assets (NSCBCIT/assets), and

SelfBCIT/BCIT representing the share of self citation stock in the total backward citation stock

of the firm. As backward citations to non-semiconductor patents enter both BCIT/assets and

NSCBCIT/assets, the estimated coefficient of NSCBCIT/assets is indeed a premium over back-

ward citations to semiconductor patents. Similarly, a self citation enters both BCIT/assets and

SelfBCIT/BCIT, so the estimated coefficient of SelfBCIT/BCIT measures the premium of self

citations over backward citations to external semiconductor patents. Table 8 presents the esti-

mation results based on the “patenting sample”, when all citations are deflated (estimates based

on other three cases are similar and thus not reported).

First let us focus on the differences between external citations made to patents within the

semiconductor industry and those made to patents from other industries. Columns (1) and

(2) of the table show that, among the external citations that a firm makes, citations to non-

semiconductor patents tend to have a lower average value than those to semiconductor patents,

but the differences are not statistically significant. As discussed in Section 2, external citations

to semiconductor patents may imply that the citing firm is entering a technological compe-

tition with the cited firms which might have already built a strong leading position in that

area, whereas such implications are much less relevant in the case of external citations to non-

semiconductor patents as the cited patents are less likely to be competing with the citing patent.

Thus the difference between the estimated value of these two kinds of citations may shed light on

the intensity of technological competition in this industry. If the leading position of cited semi-

conductor patent is very strong, then we should expect a significantly positive premium on the

value of non-semiconductor citations over that of semiconductor citations.13 Thus, the insignif-

13The value of these two kinds of citations may differ for another reason, that is, the knowledge embodied

in a non-semiconductor backward citation maybe less technologically relevant to the firm than a citation to
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icant estimate of this difference suggest that the disadvantage of being late in the technological

competition in the semiconductor industry is not significant. In other words, the incumbent

firms (which possess earlier patents in this area) are not able to build and keep a position that is

strong enough to effectively deter other firms from entering the competition. This is consistent

with the rapid pace of technological innovations in this industry and more importantly, the fact

that technological innovations in this industry are a “cumulative” process (Levin, Klevorick,

Nelson, and Winter 1987, Scotchmer 1991) in which innovations are built successively on previ-

ous inventions and therefore often require access to hundreds of patents owned by a diverse set

of entities (Hall and Ziedonis 2001). Cumulative innovations, rapid change, and multiple owners

of overlapping technology rights make it very difficult to build and keep a leading position that

is strong enough to effectively deter challengers.

Columns (3) and (5) of Table 8 reveal how the value of these two kinds of external citations

varies with the size of firm’s patent portfolio. The value of non-semiconductor citations does not

vary much as the size of firm’s patent portfolio increases. However, the value of semiconductor

citations declines as the firm holds more patents. This seems to suggest that, when the knowledge

spillovers occur within the same technological field, the value of such spillovers decline with

the size of the receiving firm’s knowledge base, as firms with large patent portfolio may have

already accumulated a lot of similar knowledge in that area and therefore each additional unit of

knowledge inflows becomes less valuable; on the other hand, firms with different patent portfolio

sizes may be equally unfamiliar with knowledge outside their expertise, and thus the value of

citations to beyond-industry patents does not vary much.

Next we explore the value of tacit knowledge as implied by the coefficient estimates on self

citations. The estimated coefficient of self-citation stock/total citation stock (SelfBCIT/BCIT)

is significantly positive in columns (1) to (3). Since self citations are also included in total

backward citations, this coefficient estimate represents the premium of self citations over external

semiconductor citations. In particular, column (2) indicates that, for a median semiconductor

firm, a 10-percentage point rise in the share of self citations increases firm value by about 6%.

semiconductor patent, and thus is less valuable. However, we check the IPC code of those cited non-semiconductor

patents, and find that the majority of them are in quite relevant technology fields, such as “electrical computers

and digital data processing systems” (IPC codes 710, 711, and 712, which include processors and memory) and

“static information storage and retrieval” (IPC code 365), etc. Therefore, the difference in technological relevance

of the knowledge flows embodied in these two kinds of backward citations should not be very large.
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And the premium over external non-semiconductor citations may be even higher.

The estimated positive premium on self citations confirms the conjecture in Section 2, that

self citations are more valuable to the firm because of the additional tacit knowledge or know-

how transfer that took place within the firm, as well as additional value in strengthening of the

firm’s position in the technological race. As we have learned that the latter seems to be relatively

unimportant in this industry, the bulk of the positive premium on self citations would be the

value added brought by internalized know-how spillovers. For a median firm, this translates into

a monetary value of about $0.4 million for firms entering the industry after 1982, or $0.28 million

for firms entering before 1982. Moreover, columns (4) and (5) show that such premiums increase

as the size of the firm’s patent portfolio increases, suggesting a higher load of tacit knowledge

for firms with more patents. And the value of such internalized spillovers are significantly higher

for post-82 entrants compared with older firms.

6. Concluding Remarks

This paper aims at quantifying the economic value of knowledge spillovers by exploring infor-

mation contained in patent citations. We estimate Tobin’s q equations on various determinants

of semiconductor firms’ knowledge assets, and find an average value in the amount of $0.6 to

1.2 million “R&D-equivalent” dollars for knowledge flows embodied in one patent citation. For

a median semiconductor firm, this implies that the total value of knowledge spillovers it had

received during the sample period could be as high as half of its actual total R&D investment

during the same period.

We also find that the value of backward citations decline when the size of firm’s patent

portfolio increases, and that citations are more valuable for firms entering the semiconductor

industry after 1982. In addition, estimation results suggest that technological competition in

this industry can be quite intense so that firms are unable to use patents to build and keep a

leading position that is strong enough to effectively deter challengers. Finally, self citations are

found to be substantially more valuable than external citations, indicating a significant amount

of tacit knowledge or know-how spillovers that occur within the same firm.
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Table 1: Sample Statistics for Semiconductor Firms:

1979-1995, 636 Firm-year Observations

Mean Median Min Max Std. dev.

Market value ($M) 935.93 114.34 0.0367 48,799.96 3,177.15

Total assets ($M) 630.37 100.13 0.876 18,333.60 1,705.74

Sales ($M) 729.78 110.50 0.1232 16,969.89 1,872.85

Tobin’s q 1.75 1.34 0.085 9.52 1.25

R&D stock ($M) 214.78 26.01 0.0736 4,965.09 593.54

Patent stock 76.61 6.72 0 2,633.78 257.99

Backward citation stock (all obs.) 260.17 19.35 0 9,158.79 859.60

Forward citation stock (all obs.) 4,568.46 244.54 0 177,990.56 15,463.84

D(patent stock = 0) 0.14 0 0 1 0.35

R&D stock/Total assets 0.38 0.27 0.0024 7.56 0.56

R&D stock/Total assets (D(pat > 0))14 0.39 0.30 0.0075 7.56 0.59

Backward cites/Total assets 0.48 0.22 0 8.17 0.92

Backward cites/Total assets (D(pat > 0)) 0.56 0.29 0 8.71 0.97

Patents/R&D 0.60 0.28 0 19.85 1.34

Patents/R&D (D(pat > 0)) 0.70 0.36 0.0025 19.85 1.43

Forward cites/Patents 58.36 24.24 0 2,466.28 151.03

Forward cites/Patents (D(pat > 0)) 67.93 32.92 2.27 2,466.28 161.15

Self bwd. cites/total bwd. cites (D(pat > 0)) 0.0705 0.0472 0 0.5028 0.0864

14Based on 545 firm-year observations whose patent stock is positive. Same below.

22



Table 2: Correlations Between Different Determinants of Knowledge Stocks:

1979-1995, 636 Firm-year Observations

R&D stock Backward cites Patents Forward cites

R&D stock 1.0000 0.8739 0.8337 0.8043

Backward cites 1.0000 0.9459 0.9603

Patents 1.0000 0.8707

Forward cites 1.0000

R&D/Assets BCIT/Assets PAT/R&D FCIT/PAT
R&D/Assets 1.0000 0.3248 -0.1341 -0.0073

BCIT/Assets 1.0000 0.4744 0.1187

PAT/R&D 1.0000 -0.374

FCIT/PAT 1.0000
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Table 3: Estimation of Tobin’s q Equation

All-firm sample: 636 firm-year observations, 1979 - 1995.

Citations not deflated Citations deflated

(1) (2) (3) (4) (5) (6)

R&D/Assets 0.2597 0.2533 0.2720 0.1683 0.2728 0.1682

(2.6773) (2.7896) (3.0256) (1.9147) (3.0244) (2.0588)

Patents/R&D 0.1339 0.1271 0.1070 0.1231 0.1033

(1.6971) (1.7507) (1.6418) (1.7561) (1.5080)

Fwd cites/Patents 0.0030 0.0040 0.0045 0.0037

(2.0117) (2.5004) (1.9565) (2.8462)

Bwd cites/Assets 0.0753 0.0965

(3.0120) (3.6973)

D(Pat = 0) 0.2036 0.1152 0.1345 0.1684 0.1423 0.1447

(2.4829) (1.6716) (1.7222) (2.1842) (1.8290) (1.8744)

LLH -584.28 -578.53 -561.24 -555.14 -563.93 -558.44

LR test –— 10.60 34.58 12.20 29.20 10.98

Patenting sample: 545 firm-year observations with positive patent stock.

Citations not deflated Citations deflated

(1) (2) (3) (4) (5) (6)

R&D/Assets 0.2587 0.2668 0.2766 0.1752 0.2735 0.1742

(2.6533) (2.7477) (2.8813) (1.8540) (2.8371) (1.9863)

Patents/R&D 0.1459 0.1390 0.0987 0.1368 0.0983

(1.6732) (1.7246) (2.0061) (1.7295) (1.9980)

Fwd cites/Patents 0.0037 0.0036 0.0058 0.0053

(2.3125) (2.4000) (2.3200) (2.5238)

Bwd cites/Assets 0.1176 0.1172

(2.9772) (3.6855)

LLH -489.18 -484.90 -463.93 -458.01 -466.29 -460.52

LR test χ2(1) –— 8.56 41.94 11.84 37.22 11.54

Note: MLE estimation; t-ratio reported in the parentheses; time dummies included.
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Table 4: Impact of Knowledge Stocks on Tobin’s q

All firms, citations not deflated Patenting firms, citations deflated
Mean Median Mean Median

R&D/Assets 0.38 0.27 0.39 0.30
BCIT/Assets 0.48 0.22 0.56 0.29
PAT/R&D 0.60 0.28 0.70 0.36
FCIT/PAT 58.36 24.24 67.93 32.92

∂ logQ
∂(R&D / A) 0.1075 0.1240 0.1115 0.1334

∂ logQ
∂(BCIT / A) 0.0481 0.0555 0.0750 0.0904

∂ logQ
∂(PAT / R&D) 0.0683 0.0788 0.0629 0.0758

∂ logQ
∂(FCIT / PAT ) 0.0026 0.0029 0.0034 0.0041

Note: calculation based on Table 1 as well as the estimated coefficients in column (4) in the
top panel and column (6) in the bottom panel of Table 3.
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Table 5: Controlling for Firm Characteristics: Patenting Sample

Citations not deflated Citations deflated
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

R&D/Assets 0.1752 0.1392 0.1226 0.1286 0.1235 0.1742 0.1405 0.1367 0.1291 0.1263
(1.8540) (1.9414) (2.0264) (1.6572) (2.1441) (1.9863) (1.9873) (2.9847) (3.5370) (2.6095)

BCIT/Assets 0.1176 0.1135 0.0978 0.0759 0.4605 0.1172 0.1206 0.1189 0.0742 0.6039
(2.9772) (2.9790) (2.1733) (1.4485) (5.9573) (3.6855) (3.0609) (2.2648) (1.8010) (6.5428)

interacted with
log sales -0.0839 -0.1029

(-5.1472) (-5.5924)
Post-82 entrant 0.1095 0.1120

(4.0556) (2.8941)
Patents/R&D 0.0987 0.0679 0.0478 0.0834 0.0685 0.0983 0.0795 0.0568 0.0584 0.0503

(2.0061) (1.8966) (1.7903) (1.2356) (3.0444) (1.9980) (2.3591) (2.2362) (1.9338) (2.1496)
Forward cites/Patents 0.0036 0.0054 0.0038 0.0039 0.0041 0.0053 0.0054 0.0043 0.0048 0.0052

(2.4010) (2.3478) (1.5833) (2.0526) (2.1579) (2.5238) (2.3478) (1.9545) (2.1818) (2.2609)
log sales 0.0918 0.0160 0.0256 -0.0228

(1.9449) (0.9816) (1.8028) (-0.6786)
Texas Instruments Effect -0.2515 -0.2132 -0.2017 -0.2774 -0.1836 -0.2122

(-3.2494) (-4.1398) (-3.5891) (-3.5519) (-3.3750) (-3.8842)
Post-82 entrant 0.6034 0.6154 0.6077 0.6227

(9.7796) (9.4418) (9.9460) (9.4475)

LLH -458.01 -454.52 -443.27 -447.34 -448.66 -460.52 -457.65 -448.11 -446.15 -451.67
χ2 statistics (LR test) –– 3.49 11.25 10.67 9.35 –– 2.87 12.41 14.37 8.85

Note: MLE estimation; t-ratio reported in the parentheses; time dummies included.



Table 6: Examining Impacts of Patent Portfolio Size: Patenting Sample

Citations not deflated Citations deflated
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

R&D/Assets 0.1752 0.1724 0.1711 0.1747 0.1778 0.1742 0.1770 0.1674 0.1888 0.1878
(1.8540) (2.6401) (2.7866) (2.1702) (2.3456) (1.9863) (2.6339) (2.6279) (2.4551) (2.1914)

BCIT/Assets 0.1176 0.8238 0.5857 0.6075 0.5534 0.1172 0.7582 0.6132 0.7309 0.6389
(2.9772) (2.6370) (4.6707) (4.5540) (4.3782) (3.6855) (5.5627) (4.7535) (4.6084) (2.1534)

interacted with
log sales 0.0896 0.1123

(0.7232) (0.8520)
log pat portfolio size -0.1545 -0.1028 -0.2536 -0.1438 -0.1922 -0.1274 -0.3051 -0.1711

(-2.3769) (-4.7373) (-1.6839) (-5.9668) (-6.6736) (-4.7361) (-4.6157) (-2.3471)
Post-82 entrant 0.2905 0.2333 0.4310 0.2504

(1.7660) (4.0503) (4.8264) (2.4287)
Patents/R&D 0.0987 0.0858 0.0841 0.0598 0.0637 0.0983 0.0703 0.0712 0.0603 0.0592

(2.0061) (2.4101) (2.1052) (2.2411) (2.3384) (1.9980) (2.3049) (2.4300) (2.3929) (2.5191)
Forward cites/Patents 0.0036 0.0052 0.0035 0.0042 0.0040 0.0053 0.0048 0.0032 0.0041 0.0038

(2.4012) (2.1667) (1.9441) (1.9227) (1.8557) (2.5238) (2.4115) (1.8824) (1.9524) (1.9005)
Texas Instruments Effect 0.1808 0.1336 0.2861 0.2380 0.2520 0.1786 0.3732 0.3223

(0.8898) (1.5924) (3.0436) (2.6772) (2.6087) (1.9061) (3.6128) (1.4921)
Post-82 entrant 0.5168 0.5165

(8.6711) (8.6516)

LLH -458.01 -446.56 -441.15 -437.33 -439.77 -460.52 -446.68 -442.84 439.95 -441.66
χ2 statistics (LR test) –– 11.45 16.86 20.68 18.24 –– 13.84 17.68 20.57 18.86

Note: MLE estimation; t-ratio reported in the parentheses; time dummies included.



Table 7: Average Value of Backward Citations Corresponding to Different
Patent Portfolio Sizes: Patenting Sample, Citation Stock Deflated

Patent portfolio size Column (8), Table 6 Column (10), Table 6
Pre-82 firms Post-82 firmsbb2 bb2/bb1 bb2 bb2/bb1 bb2 bb2/bb1

Lower 25% 8 0.3483 2.08 0.2831 1.51 0.5335 2.84

Median 28 0.1887 1.13 0.0688 0.37 0.3192 1.70

Top 25% 95 0.0330 0.20 -0.1403 -0.75 0.1101 0.59

Note: calculation based on estimates in columns (8) and (10) of Table 6.
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Table 8: Spillovers Within and Beyond Firm and Industry: Non-semiconductor,
External Semiconductor, and Self Citations. Patenting Sample, Citation Stock
Deflated

(1) (2) (3) (4) (5)

R&D/Assets 0.1807 (2.0418) 0.1779 (2.0262) 0.1857 (2.0519) 0.1742 (1.9931) 0.1905 (2.0572)
BCIT/Assets 0.2418 (2.2640) 0.1685 (2.7944) 0.6660 (3.7374) 0.9081 (4.3429) 2.4158 (7.7306)
interacted with
log pat portfolio size -0.1763 (-6.5784) -0.2096 (-5.3606) -0.4905 (6.6373)
Post-82 entrant 0.3793 (5.2901) 0.1297 (1.5081) -0.3877 (-2.3174)

NSCBCIT/Assets -0.0602 (-0.3472) -0.0748 (-1.2026) -0.1048 (-1.6375) -0.0957 (-1.9732) -2.3328 (-6.5271)
interacted with

log pat portfolio size 0.4225 (4.4148)
Post-82 entrant 0.9010 (3.4090)

SelfBCIT/BCIT 0.1475 (1.4647) 0.6101 (2.1970) 0.6851 (2.2776) -0.7785 (2.3527) -2.3187 (-2.7729)
interacted with

log pat portfolio size 0.2660 (1.0870) 0.5922 (2.5115)
Post-82 entrant 3.9619 (5.5388) 4.2925 (5.9297)

Patents/R&D 0.0705 (3.0388) 0.0685 (2.7183) 0.0668 (2.1974) 0.0743 (2.4603) 0.0702 (2.3557)
Forward cites/Patents 0.0055 (2.1154) 0.0041 (2.1579) 0.0047 (2.1364) 0.0038 (2.7143) 0.0042 (2.3333)
Texas Instruments Effect -0.2534 (-4.6325) 0.2864 (2.8413) 0.2130 (1.3777) 0.0631 (0.4157)
Post-82 entrant 0.6078 (10.4433)

Note: MLE estimation; t-ratio reported in the parentheses; time dummies included.



Appendix

Construction of Tobin’s q and R&D stocks from Compustat

We extract the market and book value as well as R&D expenditures of the 120 semiconductor

firms from Compustat database, from 1979 to 1995. Tobin’s q is defined as

q =
MKVALM +DT + PSTK

AT
(A.1)

whereMKVALM is the “sum of all the company’s trading issues multiplied by their respective

monthly closing price” by the end of each year, DT refers to the amount of total debt including

both the long-term and short-term debt, PSTK is the market value of preferred shares of the

company, and AT represents the “current assets plus net property, plant and equipment plus

other noncurrent assets.” All monetary values are adjusted for inflation based on U.S. GDP

deflator and are in units of million 1998 U.S. dollars.

R&D capital stock is constructed as the accumulated current and past R&D expenditures,

assuming an annual depreciation rate of 15%. As we do not have data on R&D expenditures

before 1979, we assume them to be zero. This unambiguously leads to an under -estimation

of R&D stocks for firms actively engaged in R&D activities before 1979. However, only 18

semiconductor firms in this sample had nonzero R&D expenditures in 1979, and only 4 of

them had R&D expenditures greater than 6 million dollars in 1979 (Advanced Micro Devices,

Intel, National Semiconductor Corp., and Texas Instruments), implying that this downward bias

should not be very severe.

Truncation of Citation Counts and Citation Inflation

To deal with the data truncation problem of forward citations, we follow HJT (2005) and

estimate a structural citation-lag model. In particular, it is assumed that the fraction of lifetime

forward citations in each year after the initial patent application follows a stationary double-

exponential distribution and is independent of the overall lifetime citation intensity, and the

frequency of a cohort t patent being cited by a cohort t+ s patent is

ct,t+s = β0αtγt+s exp(−β1s)(1− exp(−β2s)) (A.2)

where β0 measures the overall citation intensity, s denotes the citation time lag, exp(−β1s)
describes a diffusion process and (1−exp(−β2s)) characterizes an obsolescence process (Jaffe, and
Trajtenberg (1996)). αt and γt+s are two time dummies for cited and citing year, respectively.
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In this study we further distinguish between citations that occurred within the same firm

(self citations), beyond the firm but still in the same narrowly defined technological field of

semiconductor, and citations made by patents from different technological fields. We make such

distinctions out of concern that knowledge flows may occur at different speed in these cases.

Thus, we formulate the following estimation equation

log(ct,t+s,j) = log(β
j
0) + log(αt) + log(γt+s)− βj1s+ log(1− exp(−βj2s)) + εt,t+s,j (A.3)

where ct,t+s,j is the frequency of a cohort t patent being cited by a cohort t + s patent, and j

indicates whether the citation occurs within the same firm, from a different firm but within the

field of semiconductor, or from a different firm and in a different technological field.

Equation (A.3) is estimated using maximum likelihood, assuming εt,t+s,j is i.i.d., normally

distributed. Based on the model estimation we can then construct the model-implied citation

frequency in the years observed in the dataset, net of time dummies and overall citation intensity,

as

Dt,1996,j =
1996−tX
s=1

exp(−βj1s)(1− exp(−βj2s)) (A.4)

where 1996 is the last year of citation records that we use (citations from cohorts 1997 to 1999

are incomplete in the database because many of those patents had not been granted by the end

of 1999). The citation frequency for years not observed in the database, conditional on citations

observed in the database, can then be projected as

ct,t+s,j =
Nt,1996,j

Dt,1996,j
exp(−βj1s)(1− exp(−βj2s)) (A.5)

where Nt,1996,j is the sum of actual number of forward citations observed in the database.

For the late 1980s and 1990s cohorts, there is an additional problem: because the forward

citations are often zero in the first several years, Nt,1996,j could be zero, so equation (A.5) will

project zero lifetime citations for them. However, citation counts are bounded below by zero,

and the expected number of lifetime citations should be positive. Thus in such cases we use

the empirical expectation of citations observed in the first 20 years after patent applications,

conditional on observing zero citations in the first M years, M = 1, 2, .., 10 :

E{
20X
j=0

Nt,t+j |
MX
j=0

Nt,t+j = 0} (A.6)
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as the prediction of total citations that will be observed in the first 20 years for those patents.

Specifically, we estimate the empirical expectation in equation (A.6) for cohorts 1975 to 1978,

for which we have an actual 20 years of citation observations in the citations database, and

assume that is the expected total citations any patent in cohort 1986 to 1995 will receive in

their first 20 years, conditional on them having received zero citations by 1996.
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