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Abstract

Measures of multivariate well-being, such as poverty or inequality, are
scalar functions of matrices of several attributes, m, associated with a
number of individual or households, N . This entails inevitable “aggrega-
tion” and summarization over individuals as well as attributes. There is
no escape from this. Such aggregation, in turn, implies a set of weights
attached to each individual, and some normative decision on how they
relate. The aggregation over the attributes also forces decisions about
the weight to be given to each attribute and the relation between the
attributes as, perhaps, substitutes or complements. We argue in favor
of information theory aggregation methods which are explicit about such
normative choices, and help place other methods in this realistic context.
According to axiomatically well developed measures of divergence in infor-
mation theory, our measures are “ideal” and other methods are therefore
sub-optimal. The advocacy of the latter must be accompanied by well
argued positions in support of special properties and other considerations
which may be compelling in a given context or application.

1 Introduction

Evaluation of household or individual well being is now widely accepted as a
multiattribute exercise. Far less agreement exists on such matters as which at-
tributes to include, how such attributes are related and/or contribute to overall
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proaches to Multidimensional Poverty Measurement” to be published by Palgrave-MacMillan,
edited by Nanak Kakwani and Jacques Silber. We thank them for their invitation to partici-
pate and for constructive input and reviews. This research was supported by funds from the
Robert & Nancy Dedman Chair in Economics at SMU. Finally, we thank Kathleen Beegle
and Jed Friedman for providing the adjusted expenditure data.
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well being, and what criteria to employ for complete (i.e., index based) rank-
ing of well-being situations. Some degree of robustness may be sought through
weak uniform rankings of states, as by Stochastic Dominance and related cri-
teria. A useful starting point, both for the believers and non-believers in the
multidimensional approach, is to see the traditional univariate assessments in
the multiattribute setting: It is as though a weight of one is attached to a single
attribute, typically income or consumption, and zero weights given to all other
real and potential factors! Univariate approaches do not avoid, rather, they
imposes very strong a priori values.

Given a matrix X of attributes, with typical element xij , for units i =
1, 2, ....N and attributes j = 1, 2, ......m, any scalar measure of well being f(X)
is a function f(.) : RNxRm → R. It is evident, and inescapable, that f(.)
aggregates over both individuals and attributes. In so doing, it must assign
weights to both individuals and to each attribute. In addition, every f(.) implies
a certain relation between individuals as well as attributes. There are only
two choices before us: make these functional characteristics explicit, or allow
them to implicitly derive from other considerations. Viewed this way, axiomatic
characterization of ‘ideal’ poverty (and other) measures does well to explicate
the properties of f(.) with respect to individual weights and relations, but not
the aggregation over attributes. Similarly, axiomatic characterization of ideal
aggregation measures may produce welfare theoretic features that may not be
desired. There is no minimalist set of axioms commanding universal acceptance
which may produce even a family of functions f(.). Additional, more restrictive
and less acceptable properties must be imposed to justify any one measure f(.).

A deeper understanding of indices, be they of poverty or inequality, makes
clear that all indices are functions of the distribution of the desired attribute(s).
Put another way, any index is a function of the moments of the distribution
of the attributes. As such, all indices omit more or less information relative to
the full distribution. Only one function, the characteristic (or moment gener-
ating function) is equivalent to the whole distribution. Entropy comes close,
see Ebrahimi, Maasoumi and Soofi (1999), since two entropies are equal if,
and only if, the two underlying distributions are the same. This property of
entropy and other information measures of welfare seems to be poorly appre-
ciated by economists. For instance, there exists no better or more complete
measure of ‘divergence’ between a given income distribution and the uniform
(rectangular) distribution. Put another way, there cannot exist a more complete
and more fully informed measure of equality/inequality than entropy. Only if
we additionally restrict such indices can we justify other measures1. Many of
these additional restrictions and properties are sensible. But they are almost
never consensus properties. This comment generally applies to the whole edifice
of welfare function-welfare theoretic assessments and the restrictions that de-

1Of course, there are many entropies, including Shannon’s which underlies Theil’s inequal-
ity measures, and Generalized Entropy, which underpins the GE measures of inequality and
Atkinson’s family. Maasoumi (1993) emphasizes the axiomatic properties that justify different
entropies and metrics, which are the same, alas with different names, that support different
measures of inequality and poverty.
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rive from it, such as ‘individualistic’, ‘utilitarian’, and ‘welfarist’ Social Welfare
Function (SWF) basis for the discussion of indices. While the latter provides
the most disciplined and elegant formalism for analysis, it does not have a claim
to producing the most complete and most ‘informed’ indices, as we shall see.

The literature on multidimensional poverty recognizes three broad classes
of measures; see Deutsch and Silber (2005): The fuzzy set approach, the infor-
mation theory approach (Maasoumi), and the axiomatic approach to poverty
measures (e.g., Bourguignon and Chakravarty (2003) and Tsui (2002)). As ar-
gued above, all three must produce aggregate measures of well-being, or what we
may term ”individual representation functions”. In the end, poverty measures
derive from this aggregate and the distribution of the constituent attributes.
All measures classify certain members of the population as ”poor”, and may
assess the intensity of their poverty (such as the expected shortfall). In this
paper we adopt the information theory perspective to assess the different ag-
gregation methods, explicit or implicit, and examine who is classified as poor in
the axiomatic and the information theory approaches.

A brief description of the Information Theory (IT) approach is as follows:
Employing information functions and related entropies, divergence/distance be-
tween distributions is a well defined concept in IT. Following Maasoumi (1986),
we find individual level aggregate welfare functions whose distributions are the
least divergent from the distributions of the constituent welfare attributes. This
provides a method of optimal aggregation in the multidimensional welfare con-
text that is able to subsume all existing implicit aggregators in this field, but
also suggest new ones. The second step is then to measure ”poverty” in the
distribution of this aggregate function of well-being. All of the existing uni-
variate poverty measures present as candidates. The IT approach also opens
new vistas in terms of the definition and concept of ”the poverty line” in the
multidimensional context. Several definitions and approaches emerge which go
beyond the existing methods.

We conclude with an empirical example and some remarks concerning imple-
mentation and practical issues. One issue concerns the identification of truly dis-
tinct dimensions/ attributes. This highlights, again, the statistical role played
by any chosen index and its ability to utilize ”information” in different dimen-
sions. This is both instructive, and illuminating in terms of the ”information
completeness” of an index alluded to above, but is not entirely unique to the
multidimensional context, merely aggravated by it. Since we only consider three
dimension of ”income”, ”education” and ”health” in our application to Indone-
sian data, in this paper we do not deal with the clustering techniques that also
use consistent IT method for dimension reduction based on the ”similarity” of
the attribute distributions. We merely report several robust measures of depen-
dence between our chosen attributes to shed light on their relations.
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1.1 Multivariate Poverty Measures

Poverty analysis is concerned with the lower part of the distribution of well-
being. In particular, the measurement of poverty generally involves three steps:
first, selecting an appropriate indicator to represent individuals’ well-being; sec-
ond, choosing a poverty line which identifies the ‘lower part’ of the distribution
to be the object of study, and hence to categorise people as poor and non-poor;
finally, selecting a functional form to aggregate individuals.

The monetary approach to poverty uses income or consumption expenditure
(Yi) as the indicator of well-being, identifies the poor as those with insufficient
income to attain minimum basic needs (z), and aggregates their shortfall to
a minimum level into a poverty index (Sen, 1976). The poverty headcount,
poverty gap, and severity of poverty are the most common indices used in the
literature, all belonging to the family of Foster-Greer-Thorbecke (FGT) poverty
measures (Foster et al., 1984).

If individual i consumes M goods xij , j = 1, 2, ...M , his well-being indicator
is Yi =

∑M
j=1 rjxij where rj is the market price for good j. The poverty line is

determined as z =
∑m

j=1 rjxij0 where xij0 belongs to the set of basic needs and
m ∈ M . The FGT index can be expressed alternatively as

FGTα =
1
n

n∑
i=1

[
max

(z − Yi

z
, 0
)]α

(1)

=
1
n

n∑
i=1

(
1− xij

zj

)α
L(xij ≤ zj) (2)

=
1
n

∑
xij≤zj

(
1− xij

zj

)α (3)

where l is an indicator function and α is a parameter indicating the sensitivity
of the index to the distribution among poor - the higher its value, the more
sensitive. For α = 0, FGT is the headcount, for α = 1 it is the poverty gap, and
for α = 2 it represents the severity of poverty.

For decades, many scholars favored a multidimensional perspective to poverty
where ‘human deprivation is visualized not through income as an intermediary
of basic needs but in terms of shortfalls from the minimum levels of basic needs
themselves’ (Tsui 2002, p. 70). This quote voices two common arguments
against the traditional income method. The first questions the assumption of
the existence of known prices and markets for all relevant determinants of de-
privation. Even if market prices do exist, one can challenge the view that these
are somehow ‘right’. From a normative perspective, market prices are just as
arbitrary as any other weights chosen by the user (Tsui, 2002). In truth, the
latter have the advantage that they allow for a clear understanding of the effects
of the weighting scheme.

More interestingly, the monetary approach relies on the implicit assumption
of perfect substitutability between attributes. Rather, for poverty or deprivation
analysis, some would argue that each attribute is to be considered ‘essential’ in
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the sense that a person who does not achieve a minimum threshold in one
dimension should be seen as poor, irrespective of how much he or she has of the
other attributes (Tsui 2002, Bourguignon and Chakravarty 2003). According
to this view, substitution between two attributes is only relevant for individuals
who are below the minimum level in all dimensions. The idea of essentiality
of attributes is consistent with the union approach of poverty (Atkinson 2003;
Duclos et al. 2003) and is expressed through the Strong Poverty Focus
Axiom (see below). We will argue that one should also accept an intermediate
position which allows for some degree of substitution between attributes even
if some are above the threshold. This intermediate view is reflected in the
Weak version of the poverty focus axiom which is satisfied by some of the
information theory indices proposed below.

Rejecting the ”market price approach”, Tsui derives a set of multidimen-
sional poverty measures following an axiomatic approach which incorporates
strong poverty focus axiom, similar in spirit to his work on multidimensional
inequality (1995, 1999). Specifically, Tsui extends standard univariate axioms
of unidimensional poverty indices, while presenting new axioms taylored to the
multivariate poverty context.

Consider the 1xm vector ( z) of poverty lines for each j attribute. Let define
a multidimensional poverty index as a mapping from the matrix X and the
vector z to a real valued number.

P (X, z) = G[f(xi1, ..., xim); z] : M(n) → < (4)

Axioms are imposed on the poverty index P(X,z) directly, rather than to
some social evaluation function (as in Tsui 1999) but these properties will con-
strain the family of individual functions f(x) and aggregate function G(.). These
are

• Continuity P (X; z) is a continuous function of X for any vector z.

• Symmetry with respect to individuals. P (X; z) = P (ΠX; z), where Π is
an nxn permutation matrix.

• Replication Invariance P (X; z) = P (Xr; z) where Xr is an r-time
replication of X.

• Monotonicity P (X; z) ≤ P (Y ; z) whenever X is derived from Y by
increasing any one attribute with respect to which a person is poor.

• Subgroup consistency For any n and m such that X1 and Y1 are nxm
matrices and X2 and Y2 are lxm, with XT := [XT

1 .XT
2 ] and Y T :=

[Y T
1 , Y T

2 ], P (X; z) > P (Y ; z) whenever P (X1; z) > P (Y1; z) and P (X2; z) =
P (Y2; z).

• Strong Poverty Focus. If any attribute such that xij ≥ zj changes,
P (X; z) does not change. This property leads us to not only ignore indi-
viduals above the poverty minimum threshold in all relevant attributes, but
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also attributes above the minimum level of individuals who do not achieve
the minimum in other attributes. Alternatively, Weak Poverty Focus
makes the poverty index independent of the attribute levels of non-poor
individuals only (Bourguignon and Chakravarty, 2003). In other words,
some interplay between attributes above and below the poverty threshold
is allowed. Tsui does not consider this weaker version.

• Ratio-Scale Invariance2 For any X ∈ D and z ∈ Z, P (XΛ; zΛ) =
P (X; z) where Λ := diag(λ) and λ ≥ 0).

The above axioms will restrict the G(.) to be increasing and continuous and
the f(.) to be continuous and non-increasing in attributes.

• Poverty Criteria Invariance. If z 6= z′ then P (X; z) ≤ P (Y ; z) ⇔
P (X; z′) ≤ P (Y ; z′) whenever X(z) = X(z′) and Y (z) = Y (z′).

This axiom ensures that there is no dramatic change in the evaluation of
poverty for changes in the poverty threshold not affecting the number of
poor. In other words, the ordering of distributions does not change, even
if the measurement itself might change.

• Poverty Non-increasing Minimal Transfer with respect to a ma-
jorization criteria3. P (Y ; z) ≤ P (X; z) where Y = BX and B is a bisto-
chastic matrix or Pigou-Dalton transfer matrix, and the transfer is among
the poor. In order words, the poverty index must be sensitive to the
dispersion of the attributes among the poor.

which restricts f(.) to be convex
Define a “basic-rearrangements increasing transfer” as a transfer between

individuals p and q such that the resulting distribution has the same attribute
marginal distribution but higher correlation between them.

• Poverty-Nondecreasing Rearrangement. If Y is derived from X by
a finite sequence of basic-rearrangements increasing transfers among the
poor with no one becoming non-poor due to the transfer, then P (X; z) ≤
P (Y ; z). In other words, more correlation between attributes among the
poor increases (or leaves unchanged) the measurement of poverty.

The last axiom restricts f(.) to be L-superadditive or, if differentiable, its
cross-partial derivatives with respect to attributes must be non-negative (i.e.

∂f2

∂xil∂xim
≥ 0)

The resulting multidimensional poverty measures are

P1(X; z) =
1
n

n∑
i=1

[
m∏

j=1

(
zj

min(xij , zj)

)δj

− 1

]
(5)

2Tsui presents also measures satisfying instead the Translation Invariance axiom
3This refers to distributional majorization criteria, multidimensional extensions of the

Pigou-Dalton Principle, Uniform Majorization or Uniform Pigou-Dalton Majorization, see
Kolm 1977
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with δj ≥ 0, j = 1, 2, ...,m, and chosen to maintain convexity of the functions,
and.

P2(X; z) =
1
n

n∑
i=1

m∑
j=1

δj ln

[
zj

min(xij , zj)

]
(6)

with δj ≥ 0, j = 1, 2, ...,m
To better understand the difference between Tsui’s poverty index and the

traditional income poverty measure we disentangle the index into the implicit
individual poverty or shortfall function, and the aggregator function across in-
dividuals (or poverty index).

The implicit individual poverty function:

pi =
m∏

j=1

[
zj

min(xij ; zj)

]δj

− 1 (7)

or

pi =
m∑

j=1

δj ln

[
zj

min(xij ; zj)

]
(8)

Notice that pi = 0 for those who are above the poverty line in all dimensions.
We can think of δj as the contribution that the relative shortfall in attribute j
makes to the individual poverty.

The implicit Poverty index is:

P (X; z) =
1
n

n∑
i=1

pi (9)

In other words, the FGT version chosen is the poverty gap, which is the first
moment of the discrete (empirical) distribution of pi.

In a closely related paper, Bourguignon and Chakravarty (2003) impose sim-
ilar axioms but two, and present a distinct family of multidimensional poverty
indices. Their indices also fall into the union approach to poverty, but replace
subgroup consistency with the separability axiom, and allow for correlation
increasing transfers to have either an increasing or decreasing effect on the eval-
uation of poverty depending on the nature of the attributes involved. In other
words, they accept both ‘Poverty-Nondecreasing Rearrangement’ and ’Poverty-
Nonincreasing Rearrangement’. The resulting poverty index is of the following
general form, similar to CES:

Pθ(X; z) =
1
n

n∑
i=1

[
m∑

j=1

wj

[
max

(
1− xij

zj
; 0
)]θ]α/θ

(10)

Disentangling the components of (10), we observe that the implicit individual
poverty function or ‘shortfall from threshold levels’ is:

pi =

[
m∑

j=1

wj

[
max

(
1− xij

zj
; 0
)]θ]1/θ

(11)
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where parameters are set so that pi is increasing and convex. wj are positive
weights attached to each j attribute, whereas θ sets the level of substitutability
between shortfalls. The higher the θ , the lower the degree of substitutability.
When θ tends to infinity relative deprivations are non-substitutes; when θ = 1
shortfalls are perfect substitutes. Under both situations, poverty will be de-
fined unidimensionally, in the first case by the attribute deprivation with the
highest value, in the second, as a simple weighted sum of attributes. Note that
the second option shares some resemblances with the standard income poverty
approach whenever the weights are determined using market prices. Convex-
ity of attributes - i.e. concavity in the space of deprivations - will restrict the
parameter to be θ ≥ 1.

The implicit Poverty index is the αth moment of the pi distribution:

P (X; z) =
1
n

n∑
i=1

(pi)α = FGTα (12)

The Bourguignon and Chakravarty proposal has the advantage of making
explicit the role of the parameters involved in the measure, such as weights,
substitution levels between attributes, and a parameter related to the weight to
be attached to poverty gaps at different levels of the distribution. Interestingly,
the effect of increasing correlation on the poverty index is dependent on the
specific relative magnitude of the θ and α paramters. The poverty measure
is also broader than Tsui’s in allowing for a more general formulation of the
”welfare function” (G) across individuals.4

2 An Information Theoretic Analysis of the ag-
gregation functions and Poverty Measures

The issue of aggregation of attributes in many dimensions has an information
theoretic interpretation and solution which reveals the information content of
each poverty aggregator function. In the context of multidimensional measure-
ment of inequality, Maasoumi (1986) proposed functionals for pi (f(.) in (4)
above) which would summarize the information in all the attributes in an ef-
ficient manner. This “efficiency” refers to completeness of information being
incorporated in any summary or aggregate function. As has been noted above,
poverty measures are (moment) functions of the distribution of pi, i = 1, 2, .....n.
Every attribute j has a distribution as well, xj = (x1j , x2j , .....xnj). Natu-
rally, the distribution of pi is derived from , and follows the m distributions
xj , j = 1, 2, .....m. In objective, empirical science, the distribution of a variable
contains all the information about that variable that is or can be accessed and
inferred objectively. Given this truism, one must select functional forms for

4Bourguignon and Chakravarty also present an interesting case where θ depends on the
poverty level, so that the substitution between shortfalls changes according to how far the
individual is from the poverty line.
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the aggregator functions pi that would make its distribution the closest to the
distributions of its constituent members, xjs. This ideal can be achieved by
solving an information theory inverse problem, based on distributional diver-
gences/distances, which produces ‘optimal’ functions for pi.

The basic measure of ‘divergence’ between two distributions is the difference
between their entropies, or the so called ‘relative entropy’. Let Si denote the
”summary” or aggregate function for individual i, based on his/her m attributes
(xi1, xi2, .....xim). Then consider a weighted average of the ‘relative entropy’
divergences between (S1, S2, ...Sn) and each xj = (x1j , x2j , .....xnj), as follows:

Dθ(S, X;w) =
m∑

j=1

wj{
n∑

i=1

Si

(
(Si/xij)−θ − 1

)
/θ(θ − 1)} (13)

where wjs are the weights attached to the Generalized Entropy divergence
from each attribute. Minimizing Dθ(.) with respect to Si such that

∑
Si = 1,

produces the following ‘optimal’ Information Theory (IT) aggregation functions:

Si ∝
( m∑

j

wjx
θ
ij

)1/θ

when θ 6= 0 (14)

Si ∝
∏
j

x
wj

ij when θ = 0 (15)

The function Dθ(.) is linear in the mutual divergences since it is merely a
weighted sum or average. One could just as easily consider hyperbolic means
of the mutual divergences. Also, the solution functions will be the same if
we considered normalized attributes, such as xij/µj ,where µj = E(xj), or
xij/

∑n
i=1 xij which are the attribute ”shares” (see Maasoumi (1986)). Note

that the standard consumer theory requirement of convexity of indifference
curves in the attribute space will demand θ to be less or equal to one. In
the context of poverty indices, one might consider the relative deprivation func-
tions, qij = 1 − xij/zj , in place of xij . In this case, the convexity requirement
is the opposite θ ≥ 1. See below for this alternative.

Will we show here that both Tsui and Bourguignon-Chakravarty indices can
be included within one of two approaches to IT indices of poverty. And, as such,
these satisfy the axioms advocated by them, as well as being based on aggregator
functions which are ‘information efficient’ based either on the attribute quantity
possessed or on relative poverty gaps (qij = 1 − xij/zj). But the IT approach
opens the way to more general measures of poverty, including more complex
moments than the average/mean functions ( 1

n

∑n
i=1) favored in the axiomatic

approach.
Another point worth emphasizing is that the first version of IT indices are

not limited to observing the ”strong focus” axiom. This means that our indices
can allow for substitution, that is compensation, from an attribute that exceeds
its poverty level to another that falls short of it. The individual does not have
to be poor in all dimensions to be either found to be poor or non-poor in
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the multidimensioned context. We think that Weak Focus is, indeed, a very
attractive feature of multidimensional approach which deserves to be examined
in many real life situations.

In the empirical part we compare these different approaches for the same
data and case study, for a range of ‘substitution parameters’ and weights.

2.1 Aggregate Poverty Line Approach to IT Indices of
Poverty.

Case A. Let us define an “aggregate poverty line” Sz that is consistent with
the IT aggregator functions Si derived above:

Sz =
( m∑

j

wjz
θ
j

) 1
θ

when θ 6= 0 (16)

and the generalized geometric mean for θ = 0.
A two step approach is to:

1. Define the multi-attribute relative deprivation function as

pi = max
[
(Sz − Si)/Sz; 0

]
= max

[
1− Si/Sz; 0

]
(17)

2. Define the following IT multi-attribute poverty measures:

Pα(S; z) =
1
n

n∑
i=1

[
max(1− Si/Sz; 0)

]α
=

1
n

n∑
i=1

pα
i (18)

This is the αth moment FGT poverty index based on the distribution of
S = (S1, S2, ....Sn).

Each attribute’s poverty line, zj plays a role in defining a multi-attribute
poverty line, Sz, which incorporates the same weights for, and relationship be-
tween, the attributes as considered for each individual/unit. All of the axioms
which support FGT are applied to individual summary functions of well be-
ing, Si. All other univariate poverty indices are applicable to the summary
distribution.

Notice that the above general formulation allows for the possibility of some
substitution between attributes above and below the poverty thresholds pro-
vided the individual is poor in at least one dimension. This will be consistent
with the Weak Poverty Focus axiom.

If, instead, one prefers to highlight the ‘essentiality’ of each component and
support a Strong version of the focus axiom (union approach), one has only to
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replace xij by the expression min(xij , zj) 5,6. In fact, when θ = 0, and for wj =
−δj , the implicit pi in (17) is equivalent to Tsui’s individual poverty function.
In general, as we presented our measure is non-negative and normalized to be
less than one. Tsui’s P1 index is also non-negative but unbounded. This has
the disadvantage that the upper bound is dependent on values and units chosen
for each poverty line zj . One interpretation is that our IT measures include a
normalized version of Tsui’s when θ = 0.

Case B. A similar but somewhat different version of this approach may also
be considered. Consider following as described above, but without the consistent
derivation of the Sz. Suppose a multidimensional poverty line is chosen directly
from the distribution S = (S1, S2, ....Sn), as though it were a target univariate
distribution. Suitable candidates for this line would be the so called ”relative”
poverty lines, such as the lower quantiles, or a percentage of the median of the
distribution. Indeed, this has been suggested by D’Ambrosio et al (2004), and
Miceli (1999) who seems to have been the first to apply the Maasoumi (1986)
approach to poverty, with application to the Swiss data.

2.2 Component Poverty Line Approach to IT Indices of
Poverty

Consider obtaining summary functions of qij = 1−xij/zj in place of x ij . qij can
be interpreted as ‘shortfalls to threshold’, as in Bourguignon and Chakravarty,
where for poor persons0 ≤ qij ≤ 1 and ‘rich’ qij ≤ 0. The optimal IT functionals
will be the same as given above. Then the second two step IT indices of poverty
are similarly derived as follows:

1. Let the relative deprivation function be

Sqi =
[ m∑

j

wjq
θ
ij

]1/θ

for θ 6= 0 and for all j, qij ≥ 0 i.e. xij ≤ zj (19)

5An intersection approach to poverty could be also obtained if the sample is restricted to
individuals with all attributes below their threshold

6To clarify the difference between Weak and Strong versions consider the individual poverty
functions when only two attributes are included. For individuals who are poor in both dimen-
sions, both the weak and the strong version would lead to

pi = 1−
�

xi1

z1

�w1
�

xi2

z2

�w2

But for persons who are poor only in one dimension - say, x1 the weak version would be

pi = max

2
41−

�
xi1

z1

�w1
�

xi2

z2

�w2

; 0

3
5

which is different from the strong version

pi =

�
z1

xi1

�−w1

− 1
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So that individual poverty function is

pi =
[ m∑

j

wjq
θ
ij

]1/θ

for all j, xij ≤ zj (20)

=
[ m∑

j

wj max(qij ; 0)θ
]1/θ

(21)

In other words, the ‘Strong focus axiom’ and ‘union’ definition of poverty
are imposed. This step obtains an aggregate of relative deprivations which
allocates weights to each, and allows trade offs between these relative
deprivations in various attributes. Again, this is only for attributes that
are below the poverty threshold. Weak Focus poverty axiom is not invoked
in the second IT approach7.

2. Define the multiattribute poverty measure

Pα(Sq; z) =
1
n

n∑
i=1

(
Sqi

)α

(22)

This is the αth moment of the distribution of Sq = (Sq1, Sq2, ....Sqn).

Here there is no explicit ‘aggregate poverty line’. To be explicit, the second
IT approach index for two dimensions, and for someone who is poor in both
dimensions is as follows:

Pα(S; z) =
1
n

n∑
i=1

[
w1

(
1− (xi1/z1)

)θ

+ w2

(
1− (xi2/z2)

)θ
]α/θ

(23)

which is the same as Bourguignon-Chackavarty poverty index.

3 Empirical Results

This section presents an application of the proposed poverty measures to data
from Indonesia. The exercise highlights the inevitability of making value judge-
ments when comparing any two multivariate distributions.

We compare three-dimensional distributions of Indonesians’ expenditure,
health status, and level of education for three different regions. These are Java,
Sumatra, and ‘Other’ regions, which contain 60%, 20% and 20% of the total
Indonesian population, respectively. The exercise is meant to be merely illus-
trative and, for this reason, we choose to represent well-being by only three

7The reason why Weak Focus cannot be invoked by the second approach is that qij < 0
when the individual possesses more than the poverty line level of that attribute. For even θ
this implies that the farther away (richer) the person is the higher his value of qij , that is,his
‘deprivation’. Clearly, an undesirable property
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attributes. Naturally, results can be extended to more dimensions. The choice
of dimensions was made given the wide agreement on their fundamental role as
both means and ends - particularly in the case of education and health (Anand
and Sen, 2000).

Data comes from the 2000 Indonesian Family Life Survey (IFLS) conducted
by RAND, UCLA and the Demographic Institute of the University of Indonesia.
The IFLS is a continuing longitudinal socioeconomic and health survey, repre-
senting 83% of the Indonesian population living in 13 provinces (out of 26).
It collects data on individual respondents, their families, their households, the
communities in which they live, and the health and education facilities they use
(Strauss, 2004). The IFLS was previously conducted in 1993, 1997, and 1998,
but data on health status is publicly available only for 2000.

Approximately 10,400 households and 39,000 individuals were interviewed
in 2000. We will restrict the study to individuals with complete information on
all relevant variables, omitting just over 1% of the sample.

The indicators used are real per capita expenditure, level of hemoglobin (Hb),
and years of education achieved by the head of household. Nominal per capita
expenditure data is adjusted using a temporal deflator (Tornquist CPI, base
year Dec 2000) and a spatial deflator (regional poverty lines) (Strauss, 2004).
Individuals’ hemoglobin levels are expressed in grams per deciliter (g/dl). Low
levels of hemoglobin indicate deficiency of iron in the blood where ‘...[i]ron de-
ficiency is thought to be the most common nutritional deficiency in the world
today” (Thomas et al, 2003, p. 4) 8. Given that normal values of Hb depend
on sex and age, we adjusted individual values to transform them into equivalent
adult levels 9.

3.1 Poverty measurements

Computing poverty involves choosing a cut-off point for each indicator. To
allow for sensitivity to different poverty lines we use two values representing
reasonable boundaries for alternative thresholds. These can be also be related
to poverty and extreme poverty lines, as in the traditional poverty literature. In
particular, for per capita expenditure we utilise Strauss (2004)’s values of Rp.
100,000 and Rp. 150,000, respectively 10; for hemoglobin 12 g/dl and 13 g/dl

8Low levels of Hb are linked to susceptibility to diseases, fatigue, and lower levels of pro-
ductivity. Reflects the combination of a diet that is high in animal proteins (primary source of
iron) and greater absorption capacity (which is reduced by disease insults, presence of worms,
loss of blood and diets high on rice). More generally, low levels related to iron deficiency. See
WHO (2001) and Thomas (2001)

9We use threshold values from WHO report (2001) to compute the table of equivalence
(Table 6, chapter 7). Normal levels of hemoglobin also vary with long exposure to altitudes
- which we ignore for our calculations but given our sample of Indonesia in this survey it
shouldn’t be problematic. Also, studies show that in US individuals from African extractions
tend to have normal lower values. A thorough assessment of anemia for Indonesian population
should consider both these issues.

10see Strauss, 2004, chapter 3. In December 2000, the exchange rate for the Rupiah was
Rp.9,480 / 1 US dollar.
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11; and for education 4 and 6 years of schooling.
Table 1 presents measurements of poverty for each attribute, using the FGT

index for values of α = 0, 1, 2 12. With few exceptions, the poverty levels in
expenditure and education are invariant to the version of FGT used, with the
highest poverty in the Other regions, followed by Java and then Sumatra. In
the case of the health indicator, on the other hand, Sumatra reports the highest
values of poverty whereas Others the lowest.

[T1]
Employing multidimensional poverty indices involves, necessarily, a signifi-

cant loss of information. Depending on how the aggregation is done – in terms of
functional form, indicator variables, and parameter values – the results will vary
in terms of cardinal values and, in some cases, the ordinal rankings of the dis-
tributions. Table 2 shows the resulting measurements using the two approaches
presented in the previous section and alternative values for the parameters. We
utilize two weighting schemes (equal weighting and giving half the importance
to expenditure), and distinct values for the substitution level θ (from -3 to 1 in
the first approach and from 0 to 3 in the second)13. As in the previous table,
we use the three standard α values of FGT measures.

[T2]
The shading of cells indicates the ranking of the distributions, with the dark-

est being the highest poverty level in each combination of index and parameters.
We first compare the results with those obtained from the univariate poverty

analysis. Java ranks second in each of the unidimensional measures. However,
when aggregating the different dimensions there appears to be some compensa-
tion between attributes such that Java is poorest by all measures. In other
words, Java has the highest level of multidimensional poverty and extreme
poverty for all combinations of weights and parameter values calculated here.

Comparison of Sumatra and the Other regions is less straightforward. All
the poverty headcount measures suggest that Sumatra is poorer than the Other
regions. This is true for all poverty lines, IT approaches, weighting schemes and
values of substitution parameters between attributes. However, once we move
to poverty measures that are sensitive to the distribution among the poor, the
ranking becomes ambiguous.

Using the strong version of the first IT poverty approach, the order between
these regions will depend on the value chosen for the substitution level between
attributes, θ. For higher values of θ, Sumatra presents higher poverty than the
Other regions, irrespective of the value of α chosen. The opposite is true for
negative values of θ.

In contrast, in the weak version of the first approach and the second IT
approach, the level of substitution between attributes will not affect the ranking
between Sumatra and the Others. It will depend exclusively on the specific
α chosen. If we ignore the distribution of relative deprivations between the

11From the WHO report, a male adult is considered anemic, possibly suffering from iron
deficiency, if his Hb is below 13 g/dl

12In the Annex we include a table with basic statistics for variables employed.
13This is to comply with the convexity requirement in the space of attributes
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Table 1. Univariate poverty measurement by regions. 
Indonesia, 2000. 

JAVA SUMATRA REST 

POVERTY α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

Expenditure 0.333 0.100 0.042 0.311 0.093 0.040 0.372 0.119 0.051
Hemoglobin 0.251 0.024 0.005 0.298 0.031 0.006 0.232 0.023 0.005
Education 0.388 0.262 0.202 0.378 0.220 0.154 0.493 0.346 0.273

EXTREME POVERTY

Expenditure 0.139 0.032 0.012 0.127 0.032 0.013 0.166 0.041 0.015
Hemoglobin 0.111 0.011 0.003 0.140 0.015 0.004 0.098 0.011 0.003
Education 0.309 0.207 0.157 0.259 0.154 0.108 0.402 0.281 0.217

Source: authors' calculations



Table 2. Multivariate poverty measurement by regions. 
Indonesia, 2000. 

POVERTY

IT - first approach WEAK FOCUS
α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

weights equal 
θ = - 3 59.84 33.71 25.64 34.99 16.90 11.62 27.94 17.45 13.62
θ = - 1 59.43 28.92 20.09 34.84 13.94 8.616 27.81 15.09 10.80
θ = 0 58.72 18.11 8.12 34.17 8.68 3.46 27.32 9.45 4.39
θ = 1/3 57.97 13.18 4.23 33.57 6.49 1.89 27.01 6.83 2.27
θ = 1 54.32 5.80 0.88 31.34 3.17 0.479 25.46 2.91 0.46

weights {1/2, 1/4, 1/4} 
θ = - 3 60.86 33.28 25.19 35.22 16.59 11.34 28.23 17.25 13.40
θ = - 1 59.93 26.90 17.94 34.75 12.73 7.520 27.93 14.10 9.69
θ = 0 58.61 14.68 5.44 33.61 6.97 2.30 27.21 7.69 2.95
θ = 1/3 57.64 10.06 2.50 33.05 4.93 1.12 26.91 5.24 1.35
θ = 1 53.31 4.21 0.48 30.20 2.30 0.267 25.05 2.13 0.25

IT - first approach STRONG FOCUS
α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

weights equal 
θ = - 3 83.80 33.91 25.67 51.46 17.06 11.64 36.34 17.52 13.63
θ = - 1 83.80 29.65 20.30 51.46 14.49 8.75 36.34 15.38 10.89
θ = 0 63.91 8.49 2.42 44.58 5.82 1.56 25.20 3.87 1.15
θ = 1/3 63.91 7.03 1.55 44.58 4.88 1.03 25.20 3.16 0.73
θ = 1 83.80 9.56 1.82 51.46 5.06 0.87 36.34 4.76 0.95

weights {1/2, 1/4, 1/4} 
θ = - 3 83.80 33.52 25.22 51.46 16.78 11.37 36.34 17.34 13.41
θ = - 1 83.80 27.68 18.15 51.46 13.31 7.65 36.34 14.41 9.78
θ = 0 63.91 6.95 1.58 44.58 4.73 1.02 25.20 3.16 0.75
θ = 1/3 63.91 5.59 0.94 44.58 3.84 0.62 25.20 2.50 0.44
θ = 1 83.80 7.31 1.03 51.46 3.89 0.50 36.34 3.63 0.54

IT - second approach STRONG FOCUS (also BC)
α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

weights equal 

θ = 1 83.80 12.91 3.33 51.46 6.83 1.60 36.34 6.50 1.74
θ = 2 83.80 21.24 9.00 51.46 11.07 4.21 36.34 10.73 4.74
θ = 3 83.80 25.41 12.90 51.46 13.21 6.01 36.34 12.84 6.80

weights {1/2, 1/4, 1/4} 

θ = 1 83.80 10.15 2.01 51.46 5.39 0.98 36.34 5.10 1.06
θ = 2 83.80 18.61 6.83 51.46 9.71 3.20 36.34 9.39 3.60
θ = 3 83.80 23.25 10.73 51.46 12.09 5.00 36.34 11.74 5.65

Java Sumatra Others



Table 2. Multivariate poverty measurement by regions. (cont)
Indonesia, 2000. 

EXTREME POVERTY

IT - first approach WEAK FOCUS
α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

weights equal 
θ = - 3 41.25 26.88 20.28 21.27 12.05 8.37 20.96 14.32 11.00
θ = - 1 41.25 23.27 16.16 21.33 10.11 6.41 20.96 12.50 8.83
θ = 0 39.93 12.60 5.17 20.57 5.36 2.02 20.54 6.83 2.84
θ = 1/3 37.52 7.76 2.04 19.07 3.36 0.84 19.53 4.20 1.12
θ = 1 24.89 1.64 0.18 12.68 0.88 0.10 13.15 0.86 0.10

weights {1/2, 1/4, 1/4} 
θ = - 3 41.29 26.74 20.13 21.26 11.96 8.29 20.98 14.25 10.93
θ = - 1 41.26 21.84 14.59 21.32 9.36 5.70 20.97 11.77 7.99
θ = 0 38.93 9.88 3.26 19.75 4.15 1.27 20.08 5.38 1.81
θ = 1/3 36.21 5.52 1.07 18.36 2.37 0.45 18.87 3.01 0.60
θ = 1 21.35 1.01 0.08 11.07 0.57 0.05 11.44 0.54 0.05

IT - first approach STRONG FOCUS
α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

weights equal 
θ = - 3 57.76 25.92 19.03 32.96 11.54 7.73 26.61 13.82 10.35
θ = - 1 57.76 23.89 16.39 32.96 10.55 6.55 26.61 12.74 8.94
θ = 0 37.87 4.72 1.16 26.08 3.07 0.71 15.47 2.22 0.56
θ = 1/3 37.87 2.41 0.26 26.08 1.62 0.17 15.47 1.11 0.13
θ = 1 57.76 5.88 0.93 32.96 2.81 0.41 26.61 3.06 0.51

weights {1/2, 1/4, 1/4} 
θ = - 3 57.76 26.83 20.15 32.96 12.04 8.30 26.61 14.29 10.94
θ = - 1 57.76 26.35 19.51 32.96 11.79 7.98 26.61 14.03 10.60
θ = 0 37.87 3.77 0.74 26.08 2.45 0.45 15.47 1.78 0.36
θ = 1/3 37.87 2.81 0.37 26.08 1.86 0.24 15.47 1.30 0.18
θ = 1 37.87 3.17 0.47 26.08 2.13 0.31 15.47 1.46 0.23

IT - second approach STRONG FOCUS (also BC)
α = 0 α = 1 α = 2 α = 0 α = 1 α = 2 α = 0 α = 1 α = 2

weights equal 

θ = 1 57.76 9.61 2.40 32.96 4.53 1.04 26.61 5.04 1.30
θ = 2 57.76 16.31 6.91 32.96 7.61 2.91 26.61 8.56 3.74
θ = 3 57.76 19.57 9.95 32.96 9.12 4.18 26.61 10.27 5.38

weights {1/2, 1/4, 1/4} 

θ = 1 57.76 7.39 1.41 32.96 3.51 0.61 26.61 3.87 0.76
θ = 2 57.76 14.24 5.24 32.96 6.66 2.21 26.61 7.47 2.83
θ = 3 57.76 17.87 8.27 32.96 8.33 3.48 26.61 9.37 4.47

Java Sumatra Others



poor (α = 0) Sumatra has higher poverty measurement than Java. Once we
incorporate some sensitivity to the disparities between the poor, Other has
higher poverty values than Sumatra.

All these results are robust to the two weighting strategies employed here.
We expect that only very extreme a priori weight systems may produce results
that are closer to the unidimensional poverty values. As expected, the measured
poverty rates increase as the substitutability between attributes decreases. At
the extreme, when there is no substitution, multidimensional poverty rates will
equal the unidimensional poverty rate for the component of the index with the
highest poverty. For all Indonesian regions this is education. Recall that higher
substitution between attributes corresponds to high values of θ in the first IT ap-
proach and to low values of θ in the component poverty line approach (based on
shortfalls). Finally, within the Aggregate Poverty Line approach we can observe
the implications of using the Weak versus the Strong Poverty Focus Axiom. In
our data, poverty rates are sensitive to this choice, but the ranking of regions is
not affected. As expected, for each combination of (wj , θ, α) the Weak Poverty
Focus Axiom yields lower measurements the the strong version. This is due to
the fact that the former allows for some degree of substitution (compensation)
between attributes for those who are poor in one dimension and not in some
other such that they end up being above the multidimensional poverty thresh-
old. This example shows that employing the Weak Poverty Focus Axiom can
be seen as intermediate case between union and intersection approaches.

4 Conclusions

We have presented the Information Theory approach to multidimensional poverty
measurement in a connected way that allows both new measures and a deeper
interpretation of the existing methods, primarily based on the axiomatic ap-
proaches. The IT approach emphasizes clarity in aggregation choices that, it is
argued, are inevitable in any multidimensional setting. The univariate meth-
ods are not exempt from this. By making aggregation issues explicit, the IT
methods are also able to reveal the meaning and the working of the multidi-
mensional context when one allows ‘compensation’ to an individual/household
from the above threshold attributes for those attributes that fall short. We feel
it is essential to have an accommodation for this possibility since, otherwise,
the case for a ‘multidimensional’ approach to poverty and welfare may not ex-
ceed far beyond adding up, or averaging, over many dimensions. Future work
will focus on differential substitution levels between individual categories, and
attribute levels. These nonlinearities require deeper and careful analysis in each
case study and empirical setting.

We have shown where, and under which conditions, our IT measures are
identical to the index families proposed earlier in the literature, and have new
IT indices when some of those conditions are relaxed. The Indonesian case
study brings out some of these issues, but not all. The CDF graphs are merely
indicative (but not statistically definitive) of a great degree of robustness in our
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ranking of poverty status of different regions of the country at a particular point
of time. Nevertheless, some degree of fragility of numerical conclusions was ob-
served relative to the degree of substitution between attributes, and ‘inequality
aversion’ within the group classified as poor, as well as allowance for compensa-
tion from higher-than-threshold attributes. The size of the group which is not
poor in all dimensions deserves a deeper examination and may itself character-
ize economies and societies in meaningful ways. We defer these issues to future
research.
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6 Annex

The following presents basic summary statistics and the figures show their re-
spective distribution, using Kernel approximation.
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Table A. 1. Summary Statistics by regions.
Indonesia, 2000. 

Variable Obs Mean Std. Dev. Min Max

Java

Real per capita expenditure 20174 284,930      335,997  20,348    19,500,000   
Hemoglobin (g/dl) 20174 13.9 1.7 2.8 25.8
Education of head of hh 20110 6.4 4.7 0.0 22.0

Sumatra
Real per capita expenditure 7213 276,867      326,213  10,409    7,058,715     
Hemoglobin (g/dl) 7213 13.7 1.8 3.2 22.3
Education of head of hh 7191 6.6 4.2 0.0 19.0

Others
Real per capita expenditure 7280 245,122      255,346  21,833    4,395,996     
Hemoglobin (g/dl) 7280 14.0 1.7 2.7 35.7
Education of head of hh 7249 5.6 4.8 0.0 19.0

Source: authors' calculation from IFLS 2000. 

Pearson Correlation Coefficients (sign 0.05) Spearman Correlation Coefficients (sign 0.05) 

Sumatra Sumatra
expenditure hemoglobin education expenditure hemoglobineducation

expenditure 1.0000 expenditure 1.0000
hemoglobin 0.0675* 1.0000 hemoglobin 0.1236* 1.0000
education 0.2112* 0.0900* 1.0000 education 0.3711* 0.0929* 1.0000

Java Java
expenditure hemoglobin education expenditure hemoglobineducation

expenditure 1.0000 expenditure 1.0000
hemoglobin 0.0719* 1.0000 hemoglobin 0.1035* 1.0000
education 0.3296* 0.0870* 1.0000 education 0.4195* 0.0894* 1.0000

Rest Rest
expenditure hemoglobin education expenditure hemoglobineducation

expenditure 1.0000 expenditure 1.0000
hemoglobin 0.0566* 1.0000 hemoglobin 0.0676* 1.0000
education 0.3263* 0.0609* 1.0000 education 0.4015* 0.0572* 1.0000

Kendall Correlation Coefficients (sign 0.05) 

Sumatra
expenditure hemoglobin education

expenditure 1.0000
hemoglobin 0.0825* 1.0000
education 0.2497* 0.0612* 1.0000

Java
expenditure hemoglobin education

expenditure 1.0000
hemoglobin 0.0689* 1.0000
education 0.2831* 0.0589* 1.0000

Rest
expenditure hemoglobin education

expenditure 1.0000
hemoglobin 0.0451* 1.0000
education 0.2719* 0.0378* 1.0000
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