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Abstract

In this paper, we use Time-Varying Conditional Copula approach (TVCC) to
model Chinese and U.S. stock markets�dependence structures with other major
stock markets around the world. AR �GARCH � t model is used to examine
the margins, while two copula models are employed to analyze the joint distri-
butions. In this pairwise analysis, both constant and time-varying conditional
dependence parameters are estimated by two-step maximum likelihood method.
Dependence depends on past realizations and some of dependence parameters
are persistent while others are quite volatile. A comparative analysis of depen-
dence structures in Chinese and U.S. stock markets is also provided. There are
three main �ndings: Firstly, the time-varying dependence model, though gives
more information on the dependence change over time, doesn�t always perform
better than constant dependence model. This result hasn�t been reported in the
literature. Secondly, notwithstanding previous research extensively reports that
the dependence between stock markets tend to be higher during market down-
turn than during market upturn, we �nd a counter-example that dependence is
much higher during market upturn than during market downturn. Finally, de-
pendence structures of Chinese and U.S. stock markets are sustantially di¤erent
from each other.

JEL classi�cation: C51; F36; G15; P52
Key words: AR-GARCH-t model; Time-varying conditional copula; Depen-

dence structure; Stock market

1 Introduction

The dependence of �nancial markets has been a heatedly-debated issue to �-
nancial economists in both academia and investment industry as it has con-
sequences for the identi�cation of opportunities for and signi�cant barriers to
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international portfolio management with important implications for asset allo-
cation and pricing; see Bartram and Dufey (2001) among others. The widely
used linear dependence measure is too simple to correctly characterize �nancial
return distributions under certain conditions. As Jondeau and Rockinger (2006)
point out, when �nancial returns are non-normal, it is impossible to specify the
multivariate distribution relating two or more return series. The copula may be
one possible way to overcome drawbacks of linear dependence measure.
Previous research has investigated how the correlation between stock market

returns varies over time. There exists signi�cant asymmetric dependence. For
example, Longin & Solnik (1995) examine correlations between stock markets
over a long time period of using the constant conditional correlation (CCC)
model proposed by Bollerslev (1990). They �nd that correlations are generally
higher during more volatile periods and depend on several economic variables.
After that, Longin and Solnik (2001) �nd that international stock markets are
more correlated in bear markets, using extreme correlation with a copula model.
Ang and Chen (2002) propose a test for asymmetric correlation by comparing
empirical and model-based conditional correlations. Patton (2004) �nds depen-
dence asymmetry of �nancial returns both in the marginal distributions and in
the dependence structure. Patton (2006a) and Patton (2006b) develop theory
of conditional copulas and employ time-varying copula models to analyze two
foreign exchange series. Jondeau & Rockinger (2006) model �nancial returns
with time-varying Skewed-t GARCH models and then use a time-varying or
a switching Gaussian or Student�s t copula for the dependence between coun-
tries. Okimoto (2007) estimates regime-switching copulas for pairs of US-UK
and other G7 countries. Rodriguez (2007) adopts the copula model with Markov
switching parameters and �nds evidence of changing dependence structures dur-
ing periods of �nancial turmoil, and increased tail dependence and asymmetry
in times of high volatility characterize Asian countries within a relatively short
time period.
As the largest emerging market in the world, China has been experiencing

rapid economic growth in last two decades, which leads to fast growing Chinese
stock market. Unfortunately, Chinese �nancial market attracts less attention
in academics. In late 1997, the Asian countries experienced a huge �nancial
crisis, however, China survived this turbulence. This �nancial crisis attracted
more attention to dependence between �nancial markets. Kim (2005) �nds
that there exist some di¤erences in the time path of dependence among Asian
countries. The question is whether the degree of dependence between China
and other countries is lower than that between other countries, so that China
can uniquely kept away from this crisis. What is dependence structure between
Chinese stock market and other major stock markets around the world? It is
also interesting to compare dependence structures with the rest of the world in
Chinese and U.S. stock markets.
This study is devoted to Chinese and U.S. stock markets. The purposes of

this study are the following. First, we investigate the di¤erent dependence struc-
tures between Chinese stock market and each major stock market as well as those
between U.S. stock market and others. It is, to my best knowledge, the �rst
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attempt to examine the dependence structure between Chinese �nancial market
and other major markets. Another new �nding is that it is possible to have
higher dependence during market upturn than during market downturn, which
has not been documented in the �nancial contagion literature. Secondly, we try
to examine the dynamics of general dependence and tail dependence using time-
varying conditional copula. We contribute to the literature in the sense that we
�nd that the time-varying model doesn�t always perform better than their con-
stant peers. Finally, a comparative analysis between China-related models and
U.S.-related models is implemented and some suggestions for practitioners are
given. We �nd that there may be a general level of dependence among �nancial
markets in developed countries and the dependence among western �nancial
markets have a more groupwise �avor.
This paper is organized as follows. Next section provides a brief review of

copulas and conditional copulas. In section 3, we discuss the model speci�cation,
including the choice of estimation strategy and speci�c marginal and copula
models. Section 4 presents estimation results for both marginal and copula
models. Section 5 concludes.

2 Theory of Conditional Copula

2.1 Copula

It is necessary to understand what is copula (unconditional) before we discuss
conditional copula. For simplicity, we will focus on only bivariate copulas even
though multivariate case can be immediately extended. Suppose we have two
random variables Y1 and Y2. Then the joint distribution function can be written
as:

F (y1; y2) = Pr(Y1 � y1; Y2 � y2) (1)

where y1 and y2 denote the realizations of random variables Y1 and Y2,
respectively.
A copula is actually a multivariate joint distribution. It allow us to de-

compose a joint distribution into its marginal distribution and its dependence
function, i.e. copula. We may construct the copula function by transforming
the random variables Y1 and Y2 to uniform marginal distribution (CDF), i.e.
F1; F2. Mathematically,

F (y1; y2) = Pr(F1(Y1) � F1(y1); F2(Y2) � F2(y2)) (2)

= C(F1(y1); F2(y2))

A complete and formal de�nition of copulas can be found in Nelsen (2006).
Also, Joe(1997) provided many nice properties of various copula families.
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2.2 Conditional Copula

Patton (2006a) summarizes the conditional copula theory. We give a brief review
here. Similar to unconditional case, we have two random variables Y1 and
Y2. We introduce conditioning variable/vector W . Let FY1Y2jW denote the
conditional distribution of (Y1; Y2) given W , and let the conditional marginal
distributions of Y1jW and Y2jW be denoted FY1jW and FY2jW , respectively. We
assume that FY1jW , FY2jW and FY1Y2jW are all continuous for simplicity.2 The
Theorem 1 on conditional copula in Patton (2006a) is reproduced below:

Theorem 1 Let FY1jW (�jw), FY2jW (�jw) be the conditional distribution of Y1jW =
w and Y2jW = w, respectively, FY1Y2jW (�j!) be the joint conditional distribu-
tion of (Y1; Y2)jW = w and ! be the support of W . Assume that FY1jW (�jw)
and FY2jW (�jw) are continuous in y1 and y2 for all w 2 !. Then there exists a
unique conditional copula C(�j!) such that

FY1Y2jW (y1;y2j!) = C(FY1jW j(y1jw); FY2jW (y2jw)jw)
= C(u; v) (3)

8(y1;y2) 2 �R� �R and w 2 ! (4)

where u = FY1jW (y1jw) and v = FY2jW (y2jw) are realizations of U � FY1jW (Y1jw)
and V � FY2jW (Y2jw) given W = w.

Theorem 1 is nothing but an extension of Sklar�s Theorem (1959). U and V
are the conditional "probability integral transforms" of Y1 and Y2. Fisher (1932)
and Rosenblatt (1952) prove that U and V follow the Unif(0; 1) distribution,
regardless of the original distributions. This is where the nice properties of
copulas come from. Patton (2002) shows that a conditional copula has the
properties of an unconditional copula. There are many copula families. In next
section, we will talk about speci�c copulas used in our model.

3 Model Speci�cation

3.1 Estimation Strategy

It has been widely accepted that the �nancial time series follow Student�s t
distribution. Also, in our case, the serial correlation and heteroskedasticity
are tested, hence the standard AR(p) � GARCH(1; 1) � t model is used to
model each marginal distribution. After estimating the marginal distribution,
we will estimate copula parameter using maximum likelihood method. Let
u � FY1jW (y1jw; �1) and v � FY2jW (y2jw; �2), where �1 and �2 are the vectors of
parameters of each margins (or the coe¢ cients of conditioning variable/vector
W ). Given C(u; v; �) = C(FY1jW (y1jw; �1); FY2jW (y2jw; �2); �), the copula den-
sity is

2This assumption is not necessary for the properties of copulas to hold. See Nelsen (2006).
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c(u; v; �) =
@2C(u; v; �)

@u@v
(5)

Hence the joint density of an observation (y1;t; y2;t) is

c(y1;t; y2;t; �) =
@2C(ut; vt; �)

@ut@vt
� @ut
@y1;t

� @vt
@y2;t

= c(ut; vt; �) � fY1jW (y1;tjw; �1) � fY2jW (y2;tjw; �2) (6)

Therefore, the log-likelihood of a sample can be written as

L(y1;t; y2;t; �; �1; �2) =
TX
t=1

ln[c(ut; vt; �) � fY1jW (y1;tjw; �1) � fY2jW (y2;tjw; �2)](7)

=
TX
t=1

ln[c(FY1jW (y1;tjw; �1); FY2jW (y2;tjw; �2); �) (8)

�fY1jW (y1;tjw; �1) � fY2jW (y2;tjw; �2)] (9)

=

TX
t=1

ln c(FY1jW (y1;tjw; �1); FY2jW (y2;tjw; �2); �) (10)

+
TX
t=1

ln fY1jW (y1;tjw; �1) +
TX
t=1

ln fY2jW (y2;tjw; �2)(11)

= LC + LY1 + LY2 (12)

where LC(y1;t; y2;t; �; �1; �2) =
TP
t=1
ln c(FY1jW (y1;tjw; �1); FY2jW (y2;tjw; �2); �),

LY1(y1;t; �1) =
TP
t=1
ln fY1jW (y1;tjw; �1), and LY2(y2;t; �2) =

TP
t=1
ln fY2jW (y2;tjw; �2)

are the individual log-likelihood functions of copula and two margins.
There are two parametric estimation methods available for copula modeling.

One is one-step procedure, the other one is two-step procedure. The one-step
procedure is to estimate all parameters of margins and copula at one time. Then
maximum likelihood estimation yields �̂ = (�̂; �̂1; �̂2), such that

�̂ = argmaxL(y1;t; y2;t; �; �1; �2) (13)

However, in some situations, the maximum likelihood estimation may be
di¢ cult to conduct due to too many parameters or just the complexity of the
model. As Jondeau and Rockinger (2006) point out, the time-varying depen-
dence parameter may be a convoluted expression of many parameters, hence an
analytical expression of the gradient of the likelihood might not exist. Therefore,
only numerical gradients may be computable, implying a dramatic slowing down
of the numerical procedure. In such a case, a two-step maximum likelihood esti-
mation procedure, also known as Inference Functions for Margins method (IFM)
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is necessary. In this paper, we use AR(p)�GARCH(1; 1)� t model to estimate
margins, which lead to many parameters. We also allow the dependence para-
meters to vary over time, hence the number of parameters increases again. Due
to the large number of parameters and the complexity of our model, we choose
two-step estimation strategy. This approach, proposed by Shih and Louis (1995)
and Joe and Xu (1996), is nothing but the maximum likelihood estimation of
the dependence parameter given the estimated marginal distributions. In �rst
step, the parameters in the marginal distributions are estimated

~�k = argmaxLYk(yk;t; �k) for k=1,2 (14)

In second step, copula parameter is estimated given ~�1 and ~�2 from �rst step

~� = argmaxLC(y1;t; y2;t; �; ~�1; ~�2) (15)

Note that the density estimation of each margin doesn�t a¤ect the estimation
of copula parameter in the second step because each margin is actually estimated
in the �rst step and hence constant in the second step. Therefore, we only
need to maximize LC(y1;t; y2;t; �; ~�1; ~�2) to get the estimate of copula parameter.
Patton (2006b) has proved that this two-step estimation produces normal and
asymptotically e¢ cient parameter estimates.

3.2 Marginal Model

To estimate bivariate distribution, we need to make assumption about each
univariate marginal distribution �rst. In this study, we assume each marginal
distribution follows AR(p)�GARCH(1; 1)� t process. This is standard model
for �nancial returns introduced by Bollerslev (1987), which is widely used in
literature; see Patton (2002, 2006a) Jondeau and Rockinger (2006) and Hu
(2006) among others. Mathematically,

yi;t = �i +

pX
j=1

�jyi;t�j + "i;t for i=1,2 (16)

r
�

�2i;t(� � 2)
� "i;tjIt�1 � t(�) (17)

�2i;t = ai + bi�
2
i;t�1 + ci"

2
i;t�1 (18)

where yi;t represents univariate stock index return series, �i is the condi-
tional mean for ith series, "i;t is error term in conditional mean equation, �2i;t is
variance, � is the degree of freedom of Student�s t distribution, It�1 is the infor-
mation set at time t� 1. We can consider this information set as conditioning
variable/vector W . The standardized residuals follow Student�s t distribution
with degree of freedom �.
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3.3 Copula Model

We will mainly focus on Normal copula and Symmetrized Joe-Clayton copula
since the former one is a good model to measure general dependence and the
latter one is good at modeling both upper and lower tail dependence. These
two types of copula models will give us a full picture of dependence structures
for �nancial returns. However, for comparison purpose, we will estimate the
models using di¤erent copula functions. These results will be discussed in next
section.

3.3.1 Normal (Gaussian) Copula

The �rst copula of interest is Normal copula, which is the dependence function
associated with bivariate normality, and can be written as:

CN (u; v; �) =

Z ��1(u)

�1

Z ��1(v)

�1

1

2�
p
(1� �2)

exp

�
�(r2 � 2�rs+ s2)

2(1� �2)

�
dr ds

(19)
where ��1 is the inverse of the standard normal CDF, � is the correlation

coe¢ cient.
In this paper, we assume that the functional form of copula is �xed through-

out the sample period while the dependence parameter is time-varying following
some evolution equation. We follow Patton (2006a) �s work to assume the fol-
lowing evolution dynamics for �t:

�t = �

0@!� + �� � �t�1 + �� � 110
10X
j=1

[��1(ut�j) � ��1(vt�j)]

1A (20)

where �(x) =
(1� e�x)
(1 + e�x)

is the modi�ed logistic transformation, aiming to

keep �t within (�1; 1) interval. Here we assume that the copula dependence pa-
rameter follows an ARMA(1; 10)-type process, in which the autoregressive term

(�� � �t�1) captures persistence e¤ect and the last term (�� � 110
10P
j=1

[��1(ut�j) �

��1(vt�j)]) captures variation e¤ect in dependence. The functional form of this
evolution equation can be changed since is hard to know what does the dynam-
ics of dependence look like. Here we follow Patton (2006a) to make our results
comparable to previous research.3

3.3.2 Symmetrized Joe-Clayton Copula

The second copula used in our study is Symmetrized Joe-Clayton (SJC) copula
proposed by Patton (2006a), which is basically a slight modi�cation of original

3Actually, we have tried several di¤erent evolution equations here, such as including lag 2
autoregressive term or replacing 10 with 20 in last term, but there is no signi�cant improvement
in our maximum likelihood estimation.
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Joe-Clayton copula. Joe-Clayton copula (also known as "BB7" copula) pro-
posed by Joe (1997) is a Laplace transformation of Clayton�s copula . It is
de�ned as

CJC(u; v; �U ; �L) = 1� (1�
�
[1� (1� u)�]�
 + [1� (1� v)�]�
 � 1

	�1=

)1=�

(21)
where � = 1= log2(2� �U ), 
 = �1= log2(�L) and �U 2 (0; 1], �L 2 (0; 1].
Unlike normal copula, there are two tail dependence parameters, �U and �L,

in this copula function. Upper tail dependence is de�ned as

�U = lim
"!1

Pr[U > "jV > "] = lim
"!1

Pr[V > "jU > "] = lim
"!1

(1�2"+C("; ")=(1�")
(22)

If this limit exists, the copula shows upper tail dependence when �U 2
(0; 1] and no tail dependence when �U = 0. Similarly, we can de�ne lower tail
dependence as

�L = lim
"!0

Pr[U 6 "jV 6 "] = lim
"!0

Pr[V 6 "jU 6 "] = lim
"!0

PrC("; ")=" (23)

If this limit exists, the copula shows lower tail dependence when �L 2 (0; 1]
and no tail dependence when �L = 0.
By construction, the Joe-Clayton copula always gives asymmetric tail de-

pendence even if two tail dependence measures are in fact equal. In order to
overcome this shortcoming, we will use Symmetrized Joe-Clayton copula, which
is given by

CSJC(u; v; �U ; �L) = 0:5�(CJC(u; v; �U ; �L)+CJC(1�u; 1�v; �U ; �L)+u+v�1)
(24)

where CJC is Joe-Clayton copula.
The advantage of SJC copula is it can be symmetric when �U = �L, whereas

the original Joe-Clayton copula still contains asymmetry even though tail de-
pendence is symmetric (when �U = �L). So the SJC copula is virtually a
generalized version of Joe-Clayton copula allowing tail dependence to be either
asymmetric or symmetric. This property makes SJC copula more attractive for
empirical work because of its generality. Gumbel and Clayton copula also cap-
ture tail dependence, however, empirical research shows that estimating Gumbel
and Clayton copulas separately does not produce much di¤erent results from
estimating Joe-Clayton copula alone, as reported by Kim (2005).
Tail dependence refers to the level of dependence in the upper-right-quadrant

tail and lower-left-quadrant tail of a multivariate distribution, hence it is an
appropriate measure of dependence of extreme events. This nice property makes
it very useful to examine the joint extreme events in �nancial returns during
high volatility or market crashing periods. One explanation of tail dependence
in our paper is a probability measure of joint extreme values in two �nancial
markets given one extreme value in one of the two markets.
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Similar to the dynamics of �t in Normal copula, we propose the following
evolution equations for �U and �L, respectively (see Patton (2006) for more
detailed explanation)

�Ut = �

0@!U + �U � �Ut�1 + �U � 110
10X
j=1

jut�j � vt�j j

1A (25)

�Lt = �

0@!L + �L � �Lt�1 + �L � 110
10X
j=1

jut�j � vt�j j

1A (26)

where � is the logistic transformation, used to keep �U and �L within (0; 1)
interval. This dynamics is again ARMA(1; 10)-type model with an autoregres-

sive term (� � � t�1) and a forcing variable (� � 1
10

10P
j=1

jut�j � vt�j j), where the

autoregressive term represents persistence e¤ect and the forcing variable cap-
tures variation in dependence. Note that we assume that �U and �L evolve
in the same pattern even thought it is possible that they follow di¤erent dy-
namics. We use 10 lags in the forcing variable to make the evolution equation
comparable with that of Normal copula.

4 Empirical Results

4.1 Data Description

We examine the interaction between Chinese/U.S. stock indices and each of
other stock indices. The labels are "CHN" for Shanghai Stock Exchange Com-
posite from China, "DEU" for DAX from Germany, "FRA" for CAC 40 from
France, "GBR" for FTSE 100 from the United Kingdom, "HKG" for Hang Seng
Stock Exchange Index from Hong Kong, "JPN" for Nikkei 225 from Japan and
"USA" for S&P 500 from the United States. I use daily stock indices from
Datastream from January 2nd, 1991 to December 31st, 2007. The sample runs
17 years and covers 4434 data points. Table 1 gives summary statistics on stock
market returns. As usual, returns are de�ned as 100 times log-di¤erence of in-
dex values, where Pt is the value of the index at time t. This reduces the sample
by one record, yielding 4433 observations.

Rt = 100� logPt=Pt�1 (27)

We have the following �ndings: Firstly, in Panel A of Table 1, the average
return of Chinese stock market is the highest one followed by Hong Kong market.
In particular, Japanese stock market shows bad performance considering the
negative average return. According to standard deviation, the most volatile
stock market is Chinese market and the next is Hong Kong, while the less
volatile market is USA. Means of each series are very small relative to their
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standard deviations. Most of markets exhibit slight negative skewness (i.e. left-
skewed) except China and Japan. China even reaches 6.05, which implies that
the distribution is highly right-skewed. All these results show that the empirical
distribution of returns exhibit fatter tails than normal distribution. We also
�nd signi�cant kurtosis in each return series. China displays extremely high
kurtosis. This high kurtosis means more of the variance is due to infrequent
extreme deviations.
Secondly, in Panel B of Table 1, all series strongly rejects the Jarque-Bera

test, showing non-normality of unconditional distribution of each series. This is
one of the reasons why multivariate normal distribution would be inappropriate.
We perform LM test to examine whether the squared return is serially correlated
up to lag 1, 5 and 10. This statistic clearly indicates that ARCH e¤ects are likely
to be found in all market returns.4 Even if there is one insigni�cant statistic of
ARCH LM(1) test for Chinese stock market, it is signi�cant at 5% level using lag
5 and 10. Ljung-Box autocorrelation test with correction for heteroskedesticity
is also implemented at lag 1, 5 and 10, implying most of return series are serially
correlated, at least at one of the lag orders.5

Finally, in Panel C of Table 1, the unconditional correlation matrix indi-
cates that a rather high dependence between geographically close countries is
expected. The correlations between DEU, FRA and GBR are relatively higher
than those of other pairs. There is some extra �ndings on the relationship be-
tween distance and stock market correlation in this paper. We will discuss this
issue in the further research section. Unconditional correlations between China
and other countries are small, but whether conditional correlations are small
or not is still unknown. The linear unconditional correlations in China-related
pairs range from -0.0158 to 0.0511. The ranking from the highest to the low-
est is CHN/HKG, CHN/JPN, CHN/DEU, CHN/FRA, CHN/GBR, CHN/USA.
The ranking of Spearman correlations remains the same as that of linear corre-
lations. Most of Spearman correlations are less than linear correlations except
CHN/HKG, which actually increases by 53% (from 0.051 to 0.078). For the U.S.-
related pairs, the linear correlations range from -0.016 to 0.455. The ranking
of linear correlations in descending order is USA/DEU, USA/FRA, USA/GBR,
USA/HKG, USA/JPN, USA/CHN. However, the ranking of Spearman correla-
tion changes into USA/FRA, USA/GBR, USA/DEU, USA/JPN, USA/HKG,
USA/CHN in descending order. Most of Spearman correlations are less than
their linear correlations except USA/JPN, which actually increases 7.3% (from
0.109 to 0.117). The linear correlation is only one way to measure dependence.
In order to use it correctly, two conditions must be satis�ed: (1) the data in
the pairs both come from normal distributions and (2) the data are at least
in the category of equal interval data. The �rst condition is evidently violated
in our case, so linear correlation is not e¤ective way to evaluate dependence.
Another possibility is to use Spearman (Rank) correlation coe¢ cient. Copula

4Other lag orders are also used to perform this test, almost all of them show signi�cant
ARCH e¤ect. The results are available upon request.

5Other lag orders are also used to perform this test, most of them show statistically sig-
ni�cant serial correlation at 5% signi�cance level. The results are available upon request.
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dependence parameter is easily transformed to this rank correlation. According
to Table 1, Spearman correlations are a little less than the linear correlation for
most pairs.

[Table 1]

4.2 Estimation of the Marginal Models

We use two-step estimation methods in this paper due to a great number of pa-
rameters in time-varying models. First, we select the di¤erent lag orders model
for the mean equations based on Akaike Information Criterion (AIC), keeping
the conditional variance equation as GARCH(1,1) for each country. We choose
AR(17) for CHN, AR(6) for DEU, AR(7) for FRA, AR(6) for GBR, AR(3)
for HKG, AR(1) for JPN, and AR(7) for USA. The results for the marginal
distributions are reported in Table 2.

[Table 2]

We then conduct model misspeci�cation test by suggestion of Diebold, Gun-
ther and Tay (1998). They suggested a less formal but very useful test. They
examined the correlograms of (z� �z); (z� �z)2; (z� �z)3; and (z� �z)4, where z is
the probability integral transforms (u and v in our study). Each moment reveals
dependence operative through the conditional mean, conditional variance, con-
ditional skewness, and conditional kurtosis. Figure 1 presents the test results.
In the AR � GARCH � t case, the correlograms show that there is no serial
correlation in the �rst four moments with few exceptions. So we can conclude
that our marginal distribution models for all countries are correctly speci�ed.
Put di¤erently, our marginal models are adequate for �nancial returns.

[Figure 1]

4.3 Estimation of the Copula Models

We present the estimation results of the dependence structure using a variety of
copula models. Table 3 and 4 summarize the log-likelihood value of each copula
estimation with a constant parameter. In Table 3, we can see that Gumbel
and Rotated Gumbel copula produce higher log-likelihood except CHN/HKG
pair and SJC copula is not bad. In Table 4, Student�s t copula produce higher
log-likelihood in USA/DEU, USA/FRA, and USA/GBR pairs while SJC copula
produce highest log-likelihood in USA/HKG and USA/JPN pairs. Since these
copula models are not nested in each other, it is hard to say which one provides
the best �t in terms of log-likelihood. Given that our purpose is to examine
general dependence as well as tail dependence (including both upper and lower
tail dependence), we will stick to Normal and SJC copulas. The Normal copula
parameter is the alternative measure of linear correlation, while the SJC copula
parameters capture both upper and lower tail dependence.
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[Table 3 and 4]

4.3.1 Results for China-related Copula Models

Table 5 reports China-related Normal and Symmetrized Joe-Clayton (SJC) cop-
ula parameter estimates of both constant and time-varying cases for the purpose
of comparison.

Normal Copula In Panel A1, the constant dependence measures are signi�-
cantly di¤erent from linear correlations reported in Table 1 Panel C. Speci�cally,
the CHN/DEU pair decreases by 29% from 0.007 to 0.005, the CHN/FRA pair
decreases from 0.002 to -0.004 with the change of sign, the CHN/GBR pair is
less negative (from -0.002 to -0.001), the CHN/HKG pair increases by 69% from
0.051 to 0.086, the CHN/JPN pair increases by 38% from 0.029 to 0.04, and the
CHN/USA pair is less negative (from -0.016 to -0.006). These results show that
the linear correlation is highly biased due to the incorrect normality assump-
tion. One of them even changes its sign from positive to negative. Comparing
these constant dependence across pairs, we can see that the highest constant
dependence comes from the CHN/HKG pair, followed by the CHN/JPN and
CHN/DEU pairs with all positive signs. This is reasonable since China and
Hong Kong have very close economic relationship. However, all constant de-
pendence levels are relatively low since the highest one, 0.086, is less than 0.1,
which implies that Chinese �nancial market is not quite dependent on others. It
is noticed that the signs and magnitude of dependence in Normal copula is more
consistent with those of Spearman�s correlation than with linear correlation in
Table 1. This again veri�es the argument that linear correlation is inappropriate
in certain conditions.
Since the constant case can be considered as restricted version of time-

varying evolution equation with two restrictions of � = 0 and � = 0, we then
perform formal likelihood ratio test to check which model is preferred. The
null is that the restricted version with constant dependence of the model is not
rejected as one moves to unrestricted model with time-varying dependence. Ac-
cording to test statistics presented in Panel A2, the null is rejected only in the
CHN/HKG pair at 5% signi�cance level, hence the time-varying model is pre-
ferred only in this pair. The constant normal copula models are preferred in all
other �ve pairs at 5% signi�cance level. We should conclude that the time path
of dependence in the CHN/HKG pair derived from time-varying model would
be more informative than others. However, given the fact that the null can
be rejected at 10% signi�cance level in the CHN/DEU and CHN/GBR pairs,
the time-varying models of these two pairs could potentially provide some in-
sights on the changes of dependence over time. The dynamics of dependence are
captured by coe¢ cients in evolution equations. The time path of dependence
parameters are presented in Figure 2-7. It can be seen that most of time paths
are close to white noise, but the CHN/GBR and CHN/HKG pairs seem to be
informative (see Figure 4 and 5). This is shown in the estimates of evolution
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equation as the persistence coe¢ cient �0s are relatively high compared to vari-
ation coe¢ cients �0s, which means that the time-variation e¤ects dominate in
these two pairs. In Figure 1, for the CHN/DEU pair, the dependence is very
volatile over time and reaches an extremely high level on March 2007. In Figure
4, for the CHN/GBR pair, the time path of dependence is relatively clear. It is
clear that the dependence was increasing throughout last three month during
2007. In Figure 5, for the CHN/HKG pair, we don�t �nd dramatic change in
dependence level on July 1997 when Hong Kong left British rule though the
dependence went up a little bit after July 1st, 1997. One explanation would
be this event was well-predicted long time back, hence this is not considered
as shock even if there was still some downturn in Hong Kong market. And we
don�t �nd signi�cant increase in dependence level during 1997 and 1998 when
Asia �nancial crisis was present, at least the highest peak within this period is
not as high as that during last year. This is because China is relatively indepen-
dent of other �nancial markets in Asia like Hong Kong, hence the CHN/HKG
dependence didn�t change much during that crashing period. Interestingly, we
cannot �nd any signi�cant change for all pairs in December 2002 when A share
was initially open to quali�ed foreign institutional investors (QFII). In 2007,
the dependence was increasing in general. The CHN/USA pair doesn�t exhibit
informative time path though it reaches a extreme peak in March 2007.

SJC Copula According to Table 5 Panel B1, in the constant tail dependence
case, most of upper and lower tail dependence are close to zero except the
CHN/HKG pair. This indicates that China and Hong Kong exhibits some
degree dependence of extreme events in stock markets. In particular, lower tail
dependence is slightly higher than upper one, hence there is higher probability of
joint extreme events during downturn period than during upturn period. This is
also true for the CHN/JPN pair, even though the magnitude of tail dependence
is less than that of the CHN/HKG pair. For other pairs, there is no observable
tail dependence, hence the joint extreme events will be less likely to happen in
these pairs. Therefore, China is not a¤ected by the extreme events in western
stock market in general. Put di¤erently, if western stock markets experience
extreme downturns or upturns, then we shouldn�t expect it would happen to
China at the same time.
In Figure 5, for the CHN/HKG pair, even if the constant upper tail de-

pendence is smaller than lower tail dependence, the time path of upper tail
dependence is more informative than that of lower tail dependence. We can see
that there exists several peaks with the highest one approaching 0.3. This shows
that the time-varying model can give us further insights on the the change in de-
pendence structure throughout the sample period. There is no strong evidence
of asymmetric tail dependence in all pairs except the CHN/HKG pair, in which
the lower tail dependence is 1.5 times upper tail dependence. We also conduct
likelihood ratio tests with four restrictions since we have two separate evolution
equations for �U and �L. The results can be found in Table 5 Panel B2. It turns
out that the time-varying models are preferred in the CHN/DEU, CHN/FRA,
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CHN/GBR and CHN/USA pairs while the constant models are better in the
CHN/HKG and CHN/JPN pairs.

[Table 5]

4.3.2 Results for U.S.-related Copula Models

Table 6 reports US-related Normal and Symmetrized Joe-Clayton (SJC) copula
parameter estimates for both constant and time-varying cases.

Normal Copula In Table 6 Panel A1, we �nd that dependence estimates
are revised by Normal copula compared to linear correlations. Speci�cally, the
USA/DEU pair decreases by 17% from 0.455 to 0.378; the USA/FRA pair
decreases by 9% from 0.428 to 0.391; the USA/GBR pair decreases by 4% from
0.413 to 0.396. However, the USA/HKG pair increases by 6% from 0.110 to
0.117 and the USA/JPN pair increases by 8% from 0.109 to 0.118. Just like
China-related pairs, this revisions again show that the linear correlations are
biased in non-normal situation. Most constant dependence estimates are closer
to the Spearman�s correlations than linear correlations. Another interesting
�nding is that the constant dependences are quite close to 0.39 in the �rst three
pairs and close to 0.12 in next two pairs. There may be a general level of
dependence within certain group of countries.
Similarly, we then implement likelihood ratio test to compare constant and

time-varying models. The time-varying models are preferred in the USA/DEU
and USA/FRA pairs, given that the null hypotheses are strongly rejected at
5% signi�cance level. For other pairs, the constant models are preferred. Tak-
ing a look at coe¢ cients in time-varying equations, the persistence coe¢ cient
�0s are signi�cantly higher than variation coe¢ cients �0s in the USA/DEU and
USA/FRA pairs. So persistence e¤ects dominate. In Figure 2-3, the USA/DEU
and the USA/FRA pairs show very clear and similar time-varying paths with
signi�cantly increasing dependence in the long run while others do not exhibit
this pattern. In the USA/DEU pair, the dependence goes down until Novem-
ber 1993 and goes up thereafter. After September 1997, the dependence is
consistently above the constant level at 0.378 with few exceptions and exhibits
more volatile pattern. The time-varying dependence reaches as low as 0 and
as high as 0.6. Interestingly, on and shortly after September 11st 2001, there
exists some increase in dependence but not as dramatic as we initially expected.
Compared to the USA/DEU pair, the USA/FRA pair displays similar pattern
but smoother time path of dependence. The path reaches two troughs in August
1994 and July 1996 and was gradually increasing during last two years. The
time-varying dependence ranges from 0.34 to 0.46. This interval is 0.12 and
hence less than the interval 0.6 of the USA/DEU pair. This smaller range of
the USA/FRA pair shows more stable dependence structure than that of the
USA/DEU pair. Beginning from October 1996, the dependence is consistently
above its constant level 0.391 with no single exception and becomes even more
stable than before considering that the range further reduces to 0.06 (from 0.4
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to 0.46). Moreover, the time path of the USA/FRA pair is less volatile than
the USA/DEU pair. In the USA/GBR pair, not like what we expected, the
time path is not quite informative and moves around the constant level 0.396.
It ranges from -0.15 to 0.15 and reaches the highest peak in March 2007. In the
USA/HKG pair, the dependence ranges from 0.06 to 0.2. It also exhibits large
variations in relatively short period (within one year). In the USA/JPN pair,
the time path is the most volatile one in U.S.-related pairs, ranging from -0.02
to 0.25. This time path is less informative than others.

SJC Copula According to Panel B, in constant case, upper and lower tail
dependence are slightly di¤erent in levels for the USA/DEU, USA/FRA and
USA/GBR pairs. Speci�cally, in these three pairs, the lower tail dependence
are higher than upper tail dependence by 0.016, 0.03, 0.043, respectively. This
implies that the limiting probability of U.S. stock market crashing, given that
German stock market has crashed, is about 8% greater than the corresponding
probability of market booming, meaning that the stock market is more depen-
dent during market downturn than during market upturn. These �ndings are
consistent with previous research; see Longin and Solnik (2001), Patton (2004)
among others. In the USA/FRA and USA/GBR pairs, the probabilities of crash-
ing are about 15% and 23% greater than that of booming, respectively. There-
fore, the USA/GBR pair has the most asymmetric tail dependence, followed by
the USA/FRA pair, and the USA/DEU pair is less asymmetric. Surprisingly, in
USA/HKG pair, the upper tail dependence is 112 times lower tail dependence,
meaning that the probability of U.S. market upturn, given Hong Kong market
upturn, is about 112 times the corresponding probability of market downturn.
This implies that the USA/HKG pair is more dependent during market upturn
than during market downturn, which, to our best knowledge, has not been re-
ported in the literature. In the USA/JPN pair, lower tail dependence is present
while upper tail dependence is very small. The lower tail dependence is about
40 times upper tail dependence, showing very strong asymmetry, meaning the
probability of U.S. market crashing, given Japanese market has crashed, is 40
times the corresponding probability of market booming.
For comparison purpose, we perform the likelihood ratio test with four re-

strictions. It turns out that all time-varying models are strongly preferred ex-
cept the USA/HKG pair. In general, the evolutions of time-varying dependence
parameters follow di¤erent patterns for upper and lower tail dependences. In
Figure 2, for USA/DEU pair, the time path of lower tail dependence is infor-
mative but that of upper tail dependence is quite noisy. In the plot of lower
tail dependence, we �nd that the time path of lower tail dependence is closer to
its constant level before August 2000 than thereafter. After August 2000, there
are �ve signi�cant peaks. In particular, there is a signi�cant adjustment period
for the lower tail dependence from December 2002 though August 2003 when it
goes up �rst and goes back to its constant level. We have similar �ndings for the
USA/FRA pair (see Figure 3). Namely, the time path of lower tail dependence
seems to be informative and very volatile while the time path of upper tail de-
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pendence is close to white noise. In the time path of lower tail dependence, we
also �nd that there are more deviations from constant level after August 2000
than before. Interestingly, there are four signi�cant peaks after August 2000,
among which there are three peaks happened at the same periods as those in
the lower tail dependence of USA/DEU pair. These two pairs exhibit similar
patterns of lower tail dependence, meaning that the downturn in U.S. stock
market may have similar e¤ects on German and French stock markets in terms
of probability. Also, it is clear that the lower tail dependences are relatively
high in several periods in these two pairs, including 911 event in 2001, but in-
terestingly it is not the highest peak in dependence path for each pair. In the
USA/GBR pair, the time paths of lower and upper tail dependences display
similar patterns, showing symmetric property. There is no signi�cant change
in both upper and lower tail dependence. In the USA/HKG pair (see Figure 5
and 6), lower tail dependence is very close to zero and upper tail dependence is
move around its constant level. In the USA/JPN pair, upper tail dependence
is volatile with three extreme peaks in September 1992, August and October
2005, respectively.

[Table 6]

[Figure 2-7]

4.3.3 Comparative Analysis of Dependence Structures of China and
U.S.

Firstly, in general, Chinese �nancial market is not quite dependent upon other
�nancial markets according to both general dependence and tail dependence.
The fact that most of tail dependence parameters are close to zero implies that
there is very low possibility that the joint extreme events will happen in China,
given one extreme event in another country. However, U.S. market is much
more correlated with other countries compared to Chinese market. This is not
surprising since the index we are using is from A share market denominated in
Chinese yuan which is not allowed to be traded by foreign investors until 2002.6

After 2002, only quali�ed foreign institutional investors (QFII) are permitted
to trade in A share market. Consequently, although there is more and more
trade �ows between China and western countries, the �nancial market in China
is relatively closed to international �nancial market. However, we should expect
that the dependence will increase in the future since it will become more and
more open to foreign investors. Moreover, the western markets are all devel-
oped economies whereas China is thought of as an "emerging" market, hence
portfolio managers tend to think of emerging markets as a separate asset class
to invest, which may lead to this low dependence. Another interesting �nding

6There is another B share market denominated in U.S. dollars. We don�t use the index
from B share market since B share is not a good representative of Chinese �nancial market.
for two reasons: 1) it is very small in terms of market value compared to A share market and
2) domestic residents in mainland China is not allowed to invest in B share market until 2001.
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is Hong Kong market, which traditionally has closer economic relationship with
mainland China, has higher dependence with U.S. market than with Chinese
market. One explanation would be that western portfolio managers consider
Hong Kong to be "investable" over the entire sample period and feel more com-
fortable getting their exposure to the Chinese economy through HKG rather
than investing directly in China for a long time period in our sample.
Secondly, in Figure 2 Normal case, the dependence is increasing in long term

for the USA/DEU pair, whereas dependence in the CHN/DEU pair is close to
white noise with an exception of a signi�cant peak in early 2007. In Figure
3 Normal case, the USA/FRA pair shows very clear dependence path (similar
pattern to USA/DEU), but the CHN/FRA pair shows just noise. In Figure
4-6, both China-related and U.S.-related pairs show very volatile dependence
without clear path. In Figure 7, the USA/CHN pair shows very low dependence
level with volatile time path. Therefore, there is no much comovement between
Chinese and U.S. stock markets. To sum up, the time paths of dependence in
USA/DEU and USA/FRA pairs are clearer and smoother than those in China-
related pairs. So U.S. market comovement with these two countries will be
more traceable than China. In contrast, in Britain, Hong Kong, and Japan-
related pairs, China exhibits clearer and smoother time paths of dependence.
In general, one may expect that the closer is the economic relationship between
two countries, the clearer and more traceable time path. This clear time path
will be useful in forecasting future dependence structure.
Finally, Table 7 reports results of model comparison, we can see that in

Panel A, for the China-related pairs, constant models dominate in normal copula
while constant and time-varying models are preferred for three pairs each in SJC
copula. In Panel B, for the U.S.-related pairs, constant models got four checks
in normal copula while time-varying SJC copula models got �ve checks out of
six. It seems that, in general, constant models dominate in China-related pairs
whereas time-varying models dominate in U.S.-related pairs. However, strictly
speaking, model preference varies across di¤erent pairs and there is no general
preference on model selection between constant and time-varying models. This
implies that we have to analyze dependence structure case by case. There is no
stylized preference in copula models.

[Table 7]

5 Concluding Remarks

Dependence structure is an important issue in �nancial contagion. The most
widely used linear correlation, though provides easy and convenient way to
describe comovement between two random variables, is not an appropriate de-
pendence measure and may be highly biased in certain non-normal situations.
The multivariate distribution with complex dynamic features makes linear cor-
relation be an improper measure. In addition, asymmetric dependence in equity
markets and foreign exchange markets is also documented in recent papers, such

17



as Longin and Solnik (2001), Ang and Chen (2002), Patton (2006a) and Ro-
driguez (2007). These features can be easily captures in copula models with
tail dependence parameters. Therefore, copula is a powerful and attractive tool
to analyze dependence between margins since it doesn�t requires normality in
margins. Recently, the copula theory has been extended to time-varying condi-
tional copula model by Patton (2006a), which allows for conditioning variable
and the dependence parameter to vary over time. This nice model provides
more insights on the dynamics of dependence structure, which makes us better
understand the change in dependence structure.
In this research we use time-varying conditional copula model to study de-

pendence structure of Chinese and U.S. stock markets. In order to use copula,
we need to correctly model marginal distribution for each series. The standard
AR(p)�GARCH(1; 1)�t model is employed to estimate these conditional mar-
ginal distributions. The test suggested by Diebold, Gunther and Tay (1998) is
implemented to examine the model misspeci�cation of conditional marginal dis-
tributions. After that, two di¤erent copulas are considered: Normal copula with
regular dependence and Symmetrized Joe-Clayton copula with upper and lower
tail dependence. Moreover, the dependence parameters are allowed to vary over
time and ARMA-type evolution equations are proposed for each dependence
parameter. The time paths of dependence structures for each pair are showed
and analyzed. The following conclusions and implications can be reached:
Firstly, we have very fruitful empirical �ndings on dependence structures of

Chinese and U.S. stock markets. 1) Due to the low level of dependence be-
tween Chinese and U.S. �nancial markets, the downturn of �nancial market in
the U.S. will less likely a¤ect Chinese stock market than other countries. Also,
given the low tail dependence, some extreme events will not in�uence Chinese �-
nancial market either. This is also true for the e¤ects of other western countries
(for example, Germany, France, Britain, and also Japan) on China. However,
Hong Kong has some impact on Chinese market at both general and tail depen-
dence levels. 2) U.S. stock market is closely associated with European markets,
such as Germany, France and Britain, in terms of general dependence and tail
dependence. This means there is high probability that the downside in U.S.
�nancial market and the downside in other European markets will happen si-
multaneously. Hence we would expect strong comovement in Europe during U.S.
recession and downturn in �nancial market. An interesting �nding is that the
USA/HKG and USA/JPN pairs display similar dependence patterns in terms
of general dependence, upper and lower tail dependence. In addition, we �nd
that there may be a general level of dependence (say 0.39 for the USA/DEU,
USA/FRA, USA/GBR pairs and 0.118 for the USA/HKG and USA/JPN pairs)
among �nancial markets in developed countries and the dependence among west-
ern �nancial markets have a more groupwise �avor. (i.e. the USA/DEU and
USA/FRA pairs demonstrate similar patterns of dependence.) 3) Compared
to U.S. stock market, Chinese market is relatively independent of other major
�nancial markets, except Hong Kong. This suggests that we should consider
Chinese market as a good candidate in portfolio management to reduce risk.
This model can be used in conditional asset allocation and Value-at-Risk con-
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texts in a non-normal �nancial world. Conditional tail dependence may provide
some useful information for portfolio weighting hence reduce exposure to down-
side risk. It also provide some insights on international portfolio management
for global hedge fund. It is still hard to test the misspeci�cation of the evolu-
tion equation of copula dependence parameter. We leave this topic for further
research.
Secondly, time-varying model provides very important information on the

time path of dependence. It shows us that the dependence could be quite volatile
and deviates from it constant level frequently, hence the constant model may not
be correctly describe the change in dependence. Notwithstanding the fact that
time-varying model is, loosely speaking, more informative than constant model
in terms of explaining the change in dependence, time-varying model doesn�t
always perform better than constant model. In some situations, the constant
model is adequate enough to fully disclose the dependence structure, such as
USA/HKG pair in our research.
Thirdly, the asymmetric behavior in dependence structure doesn�t mean that

there is always higher dependence during bear market than during bull market.
It could be the other way around. In this paper, we �nd that there is higher
dependence during bull market than during bear market in the USA/HKG pair.
This �nding, to our best knowledge, has not been documented in previous re-
search.
Finally, regarding further research, an interesting �nding is that the longer is

the physical distance, the lower the dependence, at least in China-related pairs.
This is in spirit similar to the intuition in gravity model of trade. Also, how
can the time-varying copula model add values to VaR calculation in contrast to
constant copula model will be very interesting. Moreover, one could also include
time dummies to check whether or not dependence level has signi�cant changed
before and after some signi�cant events, such as, 911 event in 2001, Hong Kong�s
leaving British rule in 1997. Lastly, out-of-sample performance of copula models
would be an interesting topic to work on. In addition, one can employ Monte
Carlo simulation method to examine the sensitivity of dependence estimates to
di¤erent copula models. We leave all these topics for further research.
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Table 1 Summary Statistics on Daily Returns 
Panel A 

  CHN  DEU  FRA  GBR  HKG  JPN  USA 

Mean  0.084  0.040  0.030  0.025  0.050  ‐0.010  0.034 

Std. Dev.  2.548  1.365  1.281  1.008  1.557  1.377  0.978 

Skewness  6.051  ‐0.299  ‐0.118  ‐0.143  ‐0.032  0.047  ‐0.121 

Kurtosis  159.462  7.504  6.136  6.324  13.157  5.457  7.204 

Panel B 

Jarque­Bera Stat. 

 

4548766.627*** 

(0.000) 

3813.035*** 

(0.000) 

1826.877*** 

(0.000) 

2055.549*** 

(0.000) 

19054.878*** 

(0.000) 

1116.843*** 

(0.000) 

3275.759*** 

(0.000) 

ARCH LM Stat. (1) 

 

2.036 

(0.154) 

181.129*** 

(0.000) 

133.535*** 

(0.000) 

226.405*** 

(0.000) 

547.448*** 

(0.000) 

42.367*** 

(0.000) 

172.264*** 

(0.000) 

ARCH LM Stat. (5) 

 

19.546*** 

(0.002) 

641.582*** 

(0.000) 

511.811*** 

(0.000) 

719.364*** 

(0.000) 

762.275*** 

(0.000) 

208.2944*** 

(0.000) 

390.054*** 

(0.000) 

ARCH LM Stat. (10) 

 

22.467** 

(0.013) 

761.826*** 

(0.000) 

664.791*** 

(0.000) 

828.381*** 

(0.000) 

779.087*** 

(0.000) 

262.870*** 

(0.000) 

476.975*** 

(0.000) 

QW Stat. (1) 

 

8.853*** 

(0.003) 

1.155 

(0.283) 

0.376 

(0.540) 

0.021 

(0.886) 

2.450 

(0.118) 

4.437** 

(0.035) 

2.217 

(0.137) 

QW Stat. (5) 

 

34.731*** 

(0.000) 

8.414 

(0.135) 

23.000*** 

(0.000) 

29.908*** 

(0.000) 

43.109*** 

(0.000) 

10.809 

(0.055) 

9.632 

(0.086) 

QW Stat. (10) 

 

42.805*** 

(0.000) 

20.795*** 

(0.023) 

31.524*** 

(0.001) 

47.157*** 

(0.000) 

51.434*** 

(0.000) 

12.528 

(0.251) 

21.779** 

(0.016) 

Number of Obs.  4433 

Panel C 

Linear Corr.  CHN  DEU  FRA  GBR  HKG  JPN  USA 

CHN  1.000             

DEU  0.007  1.000           

FRA  0.002  0.767  1.000         

GBR  ‐0.002  0.684  0.780  1.000       

HKG  0.051  0.319  0.290  0.305  1.000     

JPN  0.030  0.230  0.240  0.242  0.372  1.000   

USA  ‐0.016  0.455  0.428  0.413  0.110  0.109  1.000 

Spearman Corr.  CHN  DEU  FRA  GBR  HKG  JPN  USA 

CHN  1.000             

DEU  0.001  1.000           

FRA  ‐0.004  0.710  1.000         

GBR  ‐0.006  0.628  0.731  1.000       

HKG  0.078  0.293  0.259  0.277  1.000     

JPN  0.028  0.232  0.221  0.220  0.347  1.000   

USA  ‐0.009  0.367  0.373  0.371  0.108  0.117  1.000 

Notes: This table presents summary statistics of each index series. The data are 100 times the log‐differences of daily stock index returns. The sample 

period runs 17 years from January 2nd, 1991 to December 31st, 2007, yielding 4433 observations in total. Under the null hypothesis of normality, the 

Jarque‐Bera test statistics has a Chi‐square distribution with  fixed degree of  freedom 2. The ARCH LM test of Engle (1982) with null hypothesis of no 

ARCH effect is conducted using 1, 5 and 10 lags with 1, 5 and 10 degree of freedom, respectively. Tests using other number of lags give the same results. 

QW statistic is the Ljung‐Box statistics for serial correlation, corrected for heteroskedesticity, computed at 1, 5 and 10 lags, respectively. The asterisks, (*) 

(**) and (***)  indicate a rejection of  the null hypothesis at  the 1%, 5% and 10% levels,  respectively. P‐values are reported  in parentheses  in Panel B. 

Correlation matrix reports the simple correlations between two country index returns. 



Table 2 Results for Marginal Models 
  CHN  DEU  FRA  GBR  HKG  JPN  USA 

Cond. Mean (αi)  0.029*** 

(0.015) 

0.085*** 

(0.014) 

0.074** 

(0.015) 

0.056*** 

(0.016) 

0.073*** 

(0.016) 

0.016 

(0.017) 

0.071*** 

(0.011) 

AR(1) (β1)  0.049*** 

(0.015) 

‐0.013 

(0.016) 

‐0.003 

(0.016) 

0.000 

(0.016) 

0.031** 

(0.015) 

‐0.040*** 

(0.016) 

‐0.022*** 

(0.015) 

AR(2) (β2)  0.041*** 

(0.015) 

0.001 

(0.015) 

‐0.024* 

(0.015) 

‐0.028** 

(0.016) 

‐0.007 

(0.015) 

  ‐0.036*** 

(0.015) 

AR(3) (β3)  0.103*** 

(0.014) 

‐0.023* 

(0.015) 

‐0.044*** 

(0.015) 

‐0.029** 

(0.015) 

‐0.034*** 

(0.014) 

  ‐0.040*** 

(0.015) 

AR(4) (β4)  0.058*** 

(0.014) 

0.021* 

(0.015) 

‐0.000 

(0.015) 

‐0.007 

(0.016) 

    ‐0.025*** 

(0.014) 

AR(5) (β5)  0.047*** 

(0.014) 

‐0.027** 

(0.015) 

‐0.046*** 

(0.015) 

‐0.039*** 

(0.015) 

    ‐0.030*** 

(0.014) 

AR(6) (β6)  ‐0.009 

(0.014) 

‐0.042*** 

(0.015) 

‐0.012 

(0.015) 

‐0.033*** 

(0.015) 

    ‐0.034*** 

(0.015) 

AR(7) (β7)  0.031*** 

(0.013) 

  ‐0.046*** 

(0.015) 

      ‐0.042*** 

(0.015) 

AR(8) (β8)  0.030*** 

(0.013) 

           

AR(9) (β9)  0.029*** 

(0.012) 

           

AR(10) (β10)  0.040*** 

(0.012) 

           

AR(11) (β11)  0.026** 

(0.012) 

           

AR(12) (β12)  0.034*** 

(0.011) 

           

AR(13) (β13)  0.021** 

(0.011) 

           

AR(14) (β14)  0.038*** 

(0.011) 

           

AR(15) (β15)  0.032*** 

(0.011) 

           

AR(16) (β16)  0.004 

(0.011) 

           

AR(17) (β17)  0.023*** 

(0.011) 

           

Cond. Variance (ai)  0.094*** 

(0.017) 

0.014*** 

(0.004) 

0.016*** 

(0.004) 

0.010*** 

(0.003) 

0.014*** 

(0.004) 

0.019*** 

(0.005) 

0.003*** 

(0.001) 

ARCH(1) (ci)  0.347*** 

(0.040) 

0.081*** 

(0.009) 

0.065*** 

(0.007) 

0.076*** 

(0.008) 

0.058*** 

(0.007) 

0.064*** 

(0.007) 

0.050*** 

(0.006) 

GARCH(1) (bi)  0.758*** 

(0.014) 

0.913*** 

(0.009) 

0.925*** 

(0.008) 

0.915*** 

(0.009) 

0.939*** 

(0.007) 

0.929*** 

(0.008) 

0.949*** 

(0.006) 

Notes: We report maximum likelihood estimates, with standard errors  in parentheses, of  the parameters of  the marginal distribution models  for each 

stock index return series. The asterisks, (*) (**) and (***) indicate a rejection of the null hypothesis at the 1%, 5% and 10% levels, respectively. 

 



Table 3 Log Likelihood of CHN‐related Copula Estimation with a Constant Dependence Parameter 
  CHN/DEU  CHN/FRA  CHN/GBR  CHN/HKG  CHN/JPN  CHN/USA 

Normal  ‐0.057  ‐0.029  ‐0.001  ‐16.435  ‐3.597  ‐0.079 

Clayton  ‐2.785  ‐0.745  ‐1.738  ‐14.217  ‐5.655  ‐0.147 

Rotated Clayton  0.006  0.009  0.012  ‐12.466  ‐1.936  0.006 

Plackett  ‐0.009  ‐0.177  ‐0.004  ‐15.148  ‐1.986  ‐0.007 

Frank  0.0001  0.0006  0.0001  ‐14.722  ‐1.954  0.0001 

Gumbel  53.515  56.439  59.873  ‐5.772  30.789  57.727 

Rotated Gumbel  32.687  46.116  40.826  ‐4.835  24.701  50.591 

Student's t  ‐2.271        ‐0.139  ‐0.204  ‐20.208  ‐4.787  ‐1.237 

Symmetrized Joe­Clayton  0.835  3.196  2.973  ‐18.547  ‐5.615  3.597 

 

Table 4 Log Likelihood of USA‐related Copula Estimation with a Constant Dependence Parameter 
  USA/DEU  USA/FRA  USA/GBR  USA/HKG  USA/JPN  USA/CHN 

Normal  ‐342.585  ‐368.355  ‐377.028  ‐30.613  ‐31.008  ‐0.079 

Clayton  ‐272.720  ‐303.491  ‐310.549  ‐35.012  ‐31.383  ‐0.147 

Rotated Clayton  ‐263.903  ‐283.530  ‐275.077  ‐13.339  ‐15.932  0.006 

Plackett  ‐328.760  ‐363.715  ‐347.602  ‐29.162  ‐30.256  ‐0.007 

Frank  ‐Inf  ‐Inf  ‐Inf  ‐28.947  ‐30.201  0.0001 

Gumbel  ‐323.616  ‐349.007  ‐336.017  ‐8.112  ‐12.813  57.727 

Rotated Gumbel  ‐325.478  ‐365.379  ‐362.617  ‐30.405  ‐26.289  50.591 

Student's t  ‐363.524  ‐401.233  ‐392.988  ‐32.789  ‐32.697  ‐1.237 

Symmetrized Joe­Clayton  ‐357.871  ‐391.591  ‐388.734  ‐35.926  ‐33.941  3.597 

 

 



Table 5 Results for CHN Copula Models 
  CHN/DEU  CHN/FRA  CHN/GBR  CHN/HKG  CHN/JPN  CHN/USA 

Panel A1: Normal Copula with Constant Dependence Parameter 

ૉഥ  0.005  ‐0.004  ‐0.001  0.086  0.040  ‐0.006 

Copula Likelihood  ‐0.057  ‐0.029  ‐0.001  ‐16.435  ‐3.597  ‐0.079 

Panel A2: Normal Copula with Time­Varying Dependence Parameter 

Constant(૑)  0.029  ‐0.008  0.0002  0.011  0.046  ‐0.021 

હ  0.345  ‐0.013  0.044  0.045  0.115  0.153 

઺  ‐1.905  ‐0.014  1.750  1.844  0.835  ‐1.987 

Copula Likelihood  ‐3.039  ‐0.037  ‐2.721  ‐22.588  ‐5.632  ‐0.639 

Likelihood Ratio (2) Stat.  ‐5.964* 

(0.051) 

‐0.016 

(0.992) 

‐5.440* 

(0.066) 

‐12.306*** 

(0.002) 

‐4.070 

(0.131) 

‐1.120 

(0.571) 

Panel B1: SJC Copula with Constant Dependence Parameter 

ૌത܃   0.000  0.000  0.000  0.002  0.000  0.000 

ૌതۺ   0.000  0.000  0.000  0.003  0.0003  0.000 

Copula Likelihood  0.835  3.196  2.973  ‐18.547  ‐5.615  3.597 

Panel B2: SJC Copula with Time­Varying Dependence Parameter 

ConstantU  ‐13.865  ‐13.865  ‐13.865  ‐9.317  ‐23.599  ‐13.865 

હ܃  ‐0.001  ‐0.001  ‐0.0007  ‐23.839  0.00015  ‐0.0007 

઺܃  0.0003  0.00003  0.00003  ‐0.011  ‐0.0000003  0.00004 

ConstantL  ‐12.960  ‐13.864  ‐13.864  2.277  ‐13.689  ‐13.865 

હۺ  ‐0.001  ‐0.0005  ‐0.0004  ‐25  ‐2.443  ‐0.0006 

઺ۺ  ‐0.00002  0.00003  0.00003  ‐11.505  ‐0.007  0.00003 

Copula Likelihood  8.113  12.473  12.137  ‐20.368  ‐2.542  13.540 

Likelihood Ratio (4) Stat.  14.556*** 

(0.006) 

18.554*** 

(0.001) 

18.328*** 

(0.001) 

‐3.642 

(0.457) 

6.146 

(0.189) 

19.886*** 

(0.001) 

Notes: The Likelihood Ratio (p) Statistic test the null hypothesis that the restricted version (with constant dependence) of a model is not rejected as one 

moves from restricted model to unrestricted model (with time‐varying dependence) where the parameter p is the number of restrictions under the null. 

So we have two restrictions in Normal copula and four restrictions in SJC copula. P‐values are reported in parentheses. The asterisks, (*) (**) and (***) 
indicate a rejection of the null hypothesis at the 1%, 5% and 10% levels, respectively. 



Table 6 Results for USA Copula Models 
  USA/DEU  USA/FRA  USA/GBR  USA/HKG  USA/JPN  USA/CHN 

Panel A1: Normal Copula with Constant Dependence Parameter 

ૉഥ  0.378  0.391  0.396  0.117  0.118  ‐0.006 

Copula Likelihood  ‐342.585  ‐368.355  ‐377.028  ‐30.613  ‐31.008  ‐0.079 

Panel A2: Normal Copula with Time­Varying Dependence Parameter 

Constant(૑)  ‐0.012  ‐0.101  0.677  0.033  0.513  ‐0.021 

હ  0.073  0.008  0.059  0.028  ‐0.231  0.153 

઺  2.088  2.368  0.378  1.711  ‐2.022  ‐1.987 

Copula Likelihood  ‐381.980  ‐374.840  ‐377.575  ‐31.546  ‐32.428  ‐0.639 

Likelihood Ratio (2) Stat.  ‐78.790*** 

(0.000) 

‐12.970*** 

(0.002) 

‐0.986 

(0.611) 

‐1.866 

(0.393) 

‐2.840 

(0.242) 

‐1.120 

(0.571) 

Panel B1: SJC Copula with Constant Dependence Parameter 

ૌത܃   0.191  0.201  0.188  0.045  0.0007  0.000 

ૌതۺ   0.207  0.231  0.231  0.0004  0.028  0.000 

Copula Likelihood  ‐357.871  ‐391.591  ‐388.734  ‐35.926  ‐33.941  3.597 

Panel B2: SJC Copula with Time­Varying Dependence Parameter 

ConstantU  ‐1.813  ‐1.654  0.002  ‐10.930  ‐11.332  ‐13.865 

હ܃  ‐1.674  ‐2.240  ‐5.250  ‐0.473  ‐1.878  ‐0.0007 

઺܃  4.126  3.900  ‐0.748  0.000  ‐0.009  0.00004 

ConstantL  0.839  ‐0.717  0.055  ‐1.338  ‐5.741  ‐13.865 

હۺ  ‐9.963  ‐3.007  ‐5.029  ‐7.338  6.520  ‐0.0006 

઺ۺ  0.387  1.033  ‐0.144  ‐0.040  6.768  0.00003 

Copula Likelihood  ‐403.619  ‐405.521  ‐399.265  ‐36.079  ‐38.832  13.540 

Likelihood Ratio (4) Stat.  ‐91.496*** 

(0.000) 

‐27.86*** 

(0.000) 

‐21.062*** 

(0.000) 

‐0.306 

(0.989) 

‐9.782** 

(0.044) 

19.886*** 

(0.001) 

Notes: The Likelihood Ratio (p) Statistic test the null hypothesis that the restricted version (with constant dependence) of a model is not rejected as one 

moves from restricted model to unrestricted model (with time‐varying dependence) where the parameter p is the number of restrictions under the null. 

So we have two restrictions in Normal copula and four restrictions in SJC copula. P‐values are reported in parentheses. The asterisks, (*) (**) and (***) 
indicate a rejection of the null hypothesis at the 1%, 5% and 10% levels, respectively. 
 
 

Table 7 Model Comparison: Constant vs. Time‐varying Models 
Panel A: China­related Models 

Model Specification  CHN/DEU  CHN/FRA  CHN/GBR  CHN/HKG  CHN/JPN  CHN/USA 

Normal 
Constant  C  C  C    C  C 

Time­varying  V*    V*  V     

SJC 
Constant        C  C  C 

Time­varying  V  V  V       

Panel B: U.S.­related Models 

    USA/DEU  USA/FRA  USA/GBR  USA/HKG  USA/JPN  USA/CHN 

Normal 
Constant      C  C  C  C 

Time­varying  V  V         

SJC 
Constant        C     

Time­varying  V  V  V    V  V 

Notes: This table is based on the results from likelihood ratio tests at 5% significance level for competing models in Table 5 and 6, where “C” means the 

constant model is preferred while “V” indicates the time‐varying model is preferred. The asterisks, (*), indicates a rejection of the null hypothesis at the 

10% level. 



Figure 1 Estimates of the Autocorrelation Functions of Powers of z of AR‐GARCH‐t Models (Diebold‐Gunther‐Tay Test) 
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USA 

 

Notes:  z  is  the probability  integral  transform of  residuals  from each  country’s marginal model. These  figures  show sample autocorrelations ofሺz െ zത), 

ሺz െ zതሻଶ, ሺz െ zതሻଷ  and  ሺz െ zതሻସ  for each country. This test is suggested by Diebold, Gunther and Tay (1998). 

 



Figure 2 Time Path of Dependence Parameters for USA/DEU and CHN/DEU Pairs 
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Figure 3 Time Path of Dependence Parameters for USA/FRA and CHN/FRA Pairs 
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Figure 4 Time Path of Dependence Parameters for USA/GBR and CHN/GBR Pairs 
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Figure 5 Time Path of Dependence Parameters for USA/HKG and CHN/HKG Pairs 
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Figure 6 Time Path of Dependence Parameters for USA/JPN and CHN/JPN Pairs 
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Figure 7 Time Path of Dependence Parameters for USA/CHN Pair 

USA/CHN 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.1

-0.05

0

0.05

0.1

0.15
Normal copula

 

 
time-varying
constant

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8
SJC copula - lower tail

 

 
time-varying
constant

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8
SJC copula - upper tail

 

 
time-varying
constant


	ChinaDependence.pdf
	Tables and Figures2

