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Abstract

Although the theoretical trade-off between the quantity and quality of children is well-established, em-
pirical evidence supporting such a causal relationship is limited. Moreover, empirical studies that have
been undertaken typically focus on education as a measure of child quality and have been predominantly
limited to linear regression analysis, thereby focusing on the impact of the quantity of children on the
(conditional) mean. In contrast, this paper uses two measures of child health as well as recently developed
nonparametric tests for stochastic dominance to assess whether the quantity-quality trade-off holds across
the entire distribution, or whether the benefits of smaller families are only experienced by some. Using
data from the Indonesia Family Life Survey and controlling for the potential endogeneity of fertility, we
find evidence that the trade-off exists over the majority of the distribution. However, robust rankings of
distributions by sibship size are only possible if one accounts for ‘dispersion’ in child health. Moreover, the
magnitude of the trade-off is not always uniform; individuals in the lower tail of the distribution may face
a greater trade-off.
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1 Introduction

Researchers and policymakers have long suspected a negative relationship between child outcomes and

the number of children in a household; the so-called quantity-quality trade-off (Becker and Tomes 1976;

Becker and Lewis 1973; Willis 1973; Becker 1960).1 The trade-off is typically assumed to originate from

parental preferences for equal levels of quality across children (Rosenzweig and Wolpin 1980). Empirical

tests of this model concentrate on estimating demand equations for child-specific outcomes (e.g., the level

of schooling), where the number of children is one potential influence on demand. Such studies document

a negative relationship between sibship size and human capital investments (see, e.g., Conley and Glauber

2005; Glick et al. 2005; Lee 2004; Ahn et al. 1998; Parish and Willis 1993; Hanushek 1992; Knodel and

Wongsith 1991; Rosenzweig and Wolpin 1980), although a few find either no effect (Black et al. 2005;

Kaestner 1997; Mock and Leslie 1984) or even a positive effect (Qian 2005; Hossain 1990; Chernochovsky

1985; Gomes 1984).

Empirical assessments of the quantity-quality trade-off have focused, however, mainly on one specific

dimension of quality: education. While education is clearly an important component of child quality,

another salient dimension, health, has received less rigorous analysis, presumably owing to the less frequent

availability of anthropometric data. Nonetheless, researchers and policymakers are cognizant of the impact

of child health on adult health and other economic outcomes. For example, Thomas and Frankenberg (2002)

state that adult stature is largely determined during the fetal and early childhood periods, and Thomas et

al. (1990, 1991) note the direct relationship between child anthropometric measures and the probability of

survival as well as skill development. Other researchers have documented a positive association between

adult health and labor market outcomes at both the microeconomic and macroeconomic levels. Specifically,

many studies have found that there is a positive impact of height on individual hourly earning (Strauss

and Thomas (1998) provide an excellent review), Fogel (1994) documents the parallel historical increases

in height and economic growth, Bloom et al. (2001) document a causal connection between life expectancy

and economic growth, and López-Casasnovas et al. (2005) offer a detailed theoretical and empirical account

of the linkages between health and economic development (see also Wolpin (1997)).

Given the importance of children’s health, a small literature has developed investigating its determi-

nants, focusing on variables such as maternal labor supply and parental education (Glick and Sahn 1998;

Thomas 1994; Thomas et al. 1990, 1991), health interventions and other public policies (Frankenberg et al.

1Throughout the text, we use the terms ‘household’ and ‘family’ interchangeably. In the data section, we explicitly define

our empirical measures.
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2005; Thomas et al. 1996; Muhuri 1995), micro-credit programs (Pitt et al. 2003), and inequality (Sahn

and Younger 2005). Behrman and Deolalikar (1988) and Strauss and Thomas (1995) survey the literature.

In many of these studies, household size enters the empirical analysis as an important control, although

the estimated relationship is not of primary interest and the issue of causation versus correlation is often

ignored. A recent, notable exception is Glick et al. (2005). The authors utilize data on twins to isolate

the casual effect of fertility on child health and school enrollment using Romanian data, finding sizeable

negative effects that increase in magnitude after accounting for the endogeneity of sibship size.

In this paper, we seek to advance the quantity-quality literature in two important ways. First, we

assess the empirical relevance of the trade-off using two measures of child health to capture quality: height-

for-age and weight-for-age. Both are frequently used measures of health, where the former (latter) is a

reflection of relatively long-term (short-term) health status.2 Second, we assess this trade-off within a

distributional framework based on the notion of stochastic dominance (SD). This approach contrasts with

previous empirical analyses of the trade-off relying on regression analysis and standard linear specifications.

While such analyses yield clear rankings of child quality across households of different sizes that are easily

interpretable, it does so at the cost of assuming implicit welfare functions that are linear in child quality. In

contrast, our distributional approach utilizes all available information, makes explicit the welfare framework

being employed, and tests for uniform rankings of distributions that are robust across a wide class of welfare

functions, rendering comparisons based on specific indices unnecessary. Although there exist alternative

frameworks for comparing distributions (or portions of distributions), the richness of SD analysis has led

to an increasing number of applications. For example, Maasoumi and Millimet (2005) examine changes

in U.S. pollution distributions over time and across regions at a point in time. Maasoumi and Heshmati

(2000) analyze changes in the Swedish income distribution over time as well as across different population

subgroups. Particularly relevant to the analysis at hand are previous applications of SD to the analysis

of treatment effects. For instance, Amin et al. (2003) analyze the effect of a micro-credit program in

Bangladesh on the distribution of consumption of participants versus non-participants. Abadie (2002)

analyzes the impact of veteran status on the distribution of civilian earnings. Bishop et al. (2000) compare

the distribution of nutrition levels across populations exposed to two different types of food stamp programs.

In addition to having a solid welfare basis, the SD approach also allows one to easily assess potential

heterogeneity in the magnitude of the trade-off across the distribution of child quality, enabling one to

2Cogill (2003, p. 11) states that height-for-age “identifies past undernutrition or chronic malnutrition” and “cannot

measure short term changes in malnutrition.” He notes that weight-for-age “reflects both past (chronic) and/or present

(acute) undernutrition.” See also Thomas et al. (1991, 1996).
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answer: Is the quantity-quality trade-off really a trade-off for all? The answer to this question may not

only shed light on the moderately inconsistent empirical findings detailed at the outset, but also is vital

for sound policymaking. For instance, if policymakers are interested in improving the health outcomes for

the least healthy children in the population, but the trade-off is more pronounced in the upper tail of the

distribution, then inferring the impact of fertility-reducing programs (e.g., investments in family planning

clinics) based on the mean trade-off (obtained from, say, regression analysis) may vastly overstate the

effects of such programs.

To perform the analysis, we first present a simple theoretical model based on Becker and Tomes (1976)

showing why the trade-off may not be homogeneous. Then, we utilize data from the 2000 wave of the

Indonesian Family Life Survey (IFLS) on over 7,000 children ten years of age and younger in households

with at least two children to conduct our tests for SD. Specifically, we assess the impact of residing in

a household with more than two children (versus only two children) on health controlling for potentially

confounding observable and unobservable characteristics by implementing an instrumental variable (IV)

method put forth in Abadie (2002). The method relies on a binary instrument, and we use an instrument

based on the gender composition of children in the household, as utilized in, for example, Butcher and

Case (1994), Angrist and Evans (1998), Cruces and Galiani (2004), and Conley and Glauber (2005).

The results are striking. In particular, we reach three main conclusions. First, we find that only the

distributions of weight-for-age can be ranked, and then only in the second-degree sense, when fertility is

treated as exogenous; the height-for-age distributions cannot be ranked in either the first- or second-degree

sense. Second, when fertility is treated as endogenous, we obtain statistically significant rankings favoring

smaller households for both health outcomes, although only in the second-degree sense. Thus, only by

incorporating the ‘dispersion’ of child quality can one obtain uniform welfare rankings. Finally, we find

some evidence that the adverse impact of fertility is heterogeneous across the distribution; the effects on

weight-for-age are greater for the least healthy children.

The remainder of the paper is organized as follows: section 2 provides a simple theoretical framework

to justify the distributional analysis; section 3 details the econometric approach; section 4 discusses the

data; section 5 presents the results; and section 6 concludes.

2 Theoretical Model

To motivate the empirical study, we present a simple model of the interaction between child quality (health)

and quantity. The model extends Becker and Tomes (1976) to discuss distributional implications, as well
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as clarify the identification strategy. To begin, we assume that each household maximizes the following

utility function

U (n, q, r, c) (1)

where n is the number of children, q is the quality per child, r is the sex ratio of children (r ∈ [0, 1]), and

c is consumption. Child quality depends on market purchased health inputs as well as a household-level

health endowment.3 Thus, the production function for child quality can be expressed as

q = q (w, θ) (2)

where w is a vector of market purchased health inputs and θ is the household health endowment. We

assume positive marginal products for each input, qw > 0 and qθ > 0; we make no assumptions about the

cross-derivative qwθ. The household budget constraint is given by

pcc+ pnn+ pwwn− δ(r − 0.5)2 = I (3)

where pc is the price of c, pn is the fixed cost per child independent of the level of child quality, pw is a

vector of input prices, δ is a parameter reflecting cost-savings due to having more children of one gender,

and I is household income.

The household maximizes its utility function (1) given the production function for child quality (2) and

the budget constraint (3). The equilibrium conditions are:

∂U

∂c
= λpc = λπc (4)

∂U

∂q
= λ

pw
∂q/∂w

n = λπq

∂U

∂n
= λ(pww + pn) = λπn

where λ is the marginal utility of income and πc, πq, and πn are the shadow prices of consumption, child

quality, and child quantity, respectively. As is well known, the equilibrium conditions imply that the shadow

price of child quality, πq, is positively related to the number of children, n. Thus, an ’exogenous’ increase

in fertility increases the shadow price of child quality, which reduces the demand for quality per child, q,

3Designation of the health endowment as a household-level attribute implies that the endowment of each child is equal.

As Becker and Tomes (1976) discuss, heterogeneous endowments across children do not alter the primary implications of the

model.
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which reduces the shadow price of child quantity, πn, further increasing n, and so on. This interaction

behavior yields the familiar quantity-quality trade-off.

Further examination, however, reveals that the magnitude of the trade-off — although not the trade-off

itself — depends on the health endowment, θ, as well as the form of the health production function in (2).

Specifically, the impact of an exogenous increase in fertility depends on the resultant change in the shadow

price of child quality. The magnitude of the change in πq depends on the prices of market purchased health

inputs, pw, which are assumed fixed, and the marginal productivity of market purchased health inputs,

qw, which in turn may depend on the household health endowment, θ. Consequently, the sign of the

cross-derivative qwθ has important implications. Consider the three possible cases. First, if qwθ > 0 (e.g.,

if (2) is a Cobb-Douglas production function), then the change in πq from an exogenous increase in n is

deceasing in θ. Thus, the magnitude of the quantity-quality trade-off will be larger at the lower tail of the

distribution of the health endowment θ. Second, if qwθ < 0, then the opposite occurs and the magnitude of

the quantity-quality trade-off will be larger in the upper tail of the distribution of the health endowment

θ. Finally, if qwθ = 0 (e.g., if (2) is additively separable as in equation (2.2) in Becker and Tomes (1976)),

then the change in πq from an exogenous increase in n is independent of θ. Thus, the magnitude of the

quantity-quality trade-off will be independent of the health endowment θ. Assessing heterogeneity in the

trade-off is one of the goals of the empirical analysis herein. However, since θ is unobserved, we test for such

heterogeneity not across the distribution of θ, but rather across the distribution of q itself. An additional

goal — assuming the quantity-quality trade-off is found to exist over at least a portion of the distribution

— is to assess the robustness of distributional comparisons over a large class of social welfare functions.

3 Empirical Methodology

3.1 Test Statistics

Our distributional comparisons are based on the notion of SD. SD tests offer the benefit of not only

examining the uniformity of the quantity-quality trade-off across the entire distribution, but also offer the

possibility of making robust welfare comparisons of distributions in the event that the distributions being

compared are found to differ. Several tests for SD have been proposed in the literature; the approach herein

is based on a generalized Kolmogorov-Smirnov test.4 To begin, let X and Y denote two outcome (health)

variables being compared (e.g., X (Y ) might refer to health of children in families with two children (more

than two children)). {xi}Ni=1 is a vector of N possibly dependent observations of X; {yi}Mi=1 is an analogous

4Maasoumi and Heshmati (2000) provide a brief review of the development of alternative tests.
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vector of realizations of Y . In the spirit of the historical development of such two-sample tests, {xi}Ni=1
and {yi}Mi=1 each constitute one sample. Thus, we refer to dependence between xi and xj , i 6= j, as within-

sample dependence (similarly for observations of Y ), and dependence between X and Y as between-sample

dependence.

Assuming general von Neumann-Morgenstern conditions, let U1 denote the class of (increasing) utility

functions u such that utility is increasing in wages (i.e. u0 ≥ 0), and U2 the class of social welfare functions

in U1 such that u00 ≤ 0 (i.e. concavity). Concavity represents an aversion to inequality in the health of

children; a high concentration of very healthy and unhealthy children is undesirable. Let F (x) and G(y)

represent the cumulative density functions (CDF) of X and Y , respectively, which are assumed to be

continuous and differentiable.

Under this notation, X First Order Stochastically Dominates Y (denoted X FSD Y ) iff E[u(X)] ≥

E[u(Y )] for all u ∈ U1, with strict inequality for some u. Equivalently,

F (z) ≤ G(z) ∀z ∈ Z, with strict inequality for some z. (5)

where Z denotes the union of the supports of X and Y . If X FSD Y , then the expected welfare from X is

at least as great as that from Y for all increasing welfare functions, with strict inequality holding for some

utility function(s) in the class. The distribution of X Second Order Stochastically Dominates Y (denoted

as X SSD Y ) iff E[u(X)] ≥ E[u(Y )] for all u ∈ U2, with strict inequality for some u. Equivalently,

Z z

−∞
F (v)dv ≤

Z z

−∞
G(v)dv ∀z ∈ Z, with strict inequality for some z. (6)

If X SSD Y , then the expected social welfare from X is at least as great as that from Y for all increasing

and concave utility functions in the class U2, with strict inequality holding for some utility function(s) in

the class. FSD implies SSD and higher orders.

Now define the following generalizations of the Kolmogorov-Smirnov test criteria:

d =

r
NM

N +M
min sup

z∈Z
[F (z)−G(z)] (7)

s =

r
NM

N +M
min sup

z∈Z

Z z

−∞
[F (u)−G(u)] du (8)

where min is taken over F −G and G − F , in effect performing two tests in order to leave no ambiguity

between the ‘equal’ and ‘unrankable’ cases. Our nonparametric tests for FSD and SSD are based on the
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empirical counterparts of d and s using the empirical CDFs, where the empirical CDF for X is given by

bFN(x) = 1

N

NX
i=1

I (X ≤ x)

and I(·) is an indicator function; bGM(y) is defined similarly for Y . If bd ≤ 0 (bs ≤ 0) to a degree of statistical
certainty, then the null hypothesis of FSD (SSD) is not rejected (see Appendix A for details).

To this point X and Y have represented two unconditional variables. However, dependence between

the quantity of children and other determinants of child health may confound the effect of fertility with

the impact of these other attributes. In particular, health may be related to family background variables

(such as parental income and education) and regional characteristics (such as social norms or access to

public facilities such as schools and medical facilities).

To circumvent this issue, we employ two strategies. First, we control for a lengthy vector of observable

determinants of child health and perform dominance tests on the residual distribution of health outcomes.

To obtain these residuals, we control for a host of attributes that may generate a spurious correlation

between the quantity and quality of children, and then conduct our SD tests on the distributions of

health outcomes purged of the ‘average’ effects of these attributes. The conditioning covariates (discussed

below) represent individual (such as age and gender), family (such as parental education, parental health,

and assets), and regional attributes (such as urban/rural status and access to public facilities). Because

the residual distributions reflect health outcomes purged of observable attributes, comparisons of such

distributions only yield accurate inference regarding the effect of the number of children if one invokes the

selection on observables assumption (i.e., households opt for larger or smaller families only on the basis of

observables attributes).5

To proceed, we estimate separate health production function models for children in each household size

category, obtain the intercept—adjusted residuals, and perform the dominance tests on these residuals.6

Specifically, in the first-stage, we estimate

qik = αk +mikβk + eεik, k = 1, 2 (9)

where qik is the health outcome for child i in household size category k (k equals 1 (two children) or 2

(more than two children) in the application), m is a vector of observable attributes, and e� is the error term.
5To be precise, the assumption of selection on observables still holds if households choose family size on the basis of

unobservables as long as these are uncorrelated with the health outcomes of children.
6The intercepts are included as part of the residuals, otherwise the conditional distributions will all be mean zero, precluding

the possibility of first order dominance.
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In the second-stage, we analyze the distributions of bεik ≡ bαk + beεik, which correspond to health outcomes
net of all observable characteristics (evaluated at the household size-specific returns, βk).

At this point, several comments are warranted. First, it should be emphasized that controls for the

number of children are omitted from (9), thereby allowing the error term to capture the residual effect of

household size not captured by the included regressors. Second, first-stage variables such as access to pubic

facilities are potentially endogenous in the usual sense (see, e.g., Pitt et al. (1993)). However, in the current

context, this is not problematic since we are not interested in identifying a causal relationship between these

variables and child health. Instead, these variables partially proxy for unobservable geographic attributes

that may be correlated with health outcomes and the presence of such facilities.7

Third, the intercept-adjusted residuals, b�ik, reflect health outcomes net of all observable characteristics
evaluated at the household size—specific returns, βk. Since this approach nets out differences due to

observables as well as the household size-specific returns to such observables, we refer to these tests as

being based on ‘Partial Residuals’ (PR). As an alternative, we also conduct tests based on the ‘Full

Residuals’ (FR), where we denote the full residuals as inclusive of differences in the return to observables.8

To accomplish this, we re-write the first-stage regression (9) for group k as

qi2 = α2 +mi2β2 + e�i2
= α2 +mi2β2 + e�i2 + (mi2β1 −mi2β1)

= α2 +mi2β1 +mi2(β2 − β1) + e�i2 (10)

where group k = 1 (two children) is implicitly treated as the ‘dominant’ category (Neuman and Oaxaca

2004). Consequently, we amend the residual tests to compare the previous intercept-adjusted residual

distribution of b�i1 with b�FRi2 ≡
³bα2 +mi2(bβ2 − bβ1) +be�i2´. Comparison of the PR and FR test results

provides insight into whether there are important interactions between the quantity of children and the

returns to other health determinants.

Despite the lengthy control set utilized above, the selection on observables assumption may still be

troublesome. As a result, many previous studies of the quantity-quality trade-off have resorted to in-

strumental variable (IV) methods. In similar spirit, we employ a second strategy — robust to selection on

unobservables — to isolate the causal effect of the number of children on child health. Specifically, we imple-

ment the procedure developed in Abadie (2002) to compare the distributions of potential health outcomes

7However, it may be the case that such control variables themselves reflect the quantity-quality trade-off (e.g., whether or

not the household boils water). If this is the case, our results may represent a lower ‘bound’ on the trade-off.
8It should be noted, however, that most, if not all, empirical studies examining the quantity-quality trade-off do not, to

our knowledge, allow the effects of other covariates to depend on the number of children.
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for (a subpopulation of) children using an IV method. According to Imbens and Rubin (1997), when a

binary instrumental variable is available, the potential distributions of the outcome variable are identified

for the subpopulation (referred to as compliers) whose treatment assignment (in this case, household size)

is affected by variation in the instrument.

Define Q0 and Q1 as the distribution of potential outcomes (health) for the untreated (children in

households with two children) and treated (children in households with more than two children), with qi(0)

and qi(1) representing specific values for observation i, i = 1, ..., N +M , from the respective distribution.

Let Di be a binary variable equal to zero (one) if the child is from a family with two children (more than

two children), and Zi be a binary instrument (discussed below). Denote Di(0) the value of Di if Zi = 0;

similarly for Di(1). Thus, Di may be written as

Di =

⎧⎨⎩ Di(0) if Zi = 0

Di(1) if Zi = 1
(11)

Given this setup, for any child i, the pair of treatment indicators {Di(0),Di(1)} and the pair of potential

health outcomes {qi(0), qi(1)} are not both observed since only one state of the world — Zi = 0 or Zi = 1

— is observed. Instead, the realized treatment assignment Di = Di(1)Zi +Di(0) (1− Zi) and the realized

potential outcome qi = qi(1)Di + qi(0) (1−Di) are observed.

Let F c(q) and Gc(q) represent the CDFs of potential health outcomes for compliers in the control and

treatment groups, respectively, which are defined as follows:

F c(q) = E [I{qi(0) ≤ q}|Di(1) = 1,Di(0) = 0]

Gc(q) = E [I{qi(1) ≤ q}|Di(1) = 1,Di(0) = 0] (12)

If Zi satisfies the following three assumptions:

(i) Independence: {qi(0), qi(1),Di(0),Di(1)} ⊥ Zi

(ii) Correlation: Pr(Zi = 1) ∈ (0, 1) and Pr(Di(0) = 1) < Pr(Di(1) = 1)

(iii) Monotonicity: Pr(Di(0) ≤ Di(1)) = 1,

then the dominance tests defined above conducted on the distributions F c(q) and Gc(q) identify the causal

effect of household size for the subpopulation of compliers, even if there exist unobservable attributes cor-

related with both the quantity and quality of children (Imbens and Angrist 1994; Angrist et al. 1996).

Moreover, as shown in Abadie (2002), SD tests conducted on the distributions F c(q) and Gc(q) are equiv-

alent to tests conducted on the distributions F (q) and G(q), where F (G) represents the distribution of
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health outcomes for children with Zi = 0 (Zi = 1). Thus, the test statistics in (7) and (8) are obtained by

replacing F and G with their empirical counterparts:

bFN0(q) =
1

No

N0X
i=1

I (Q ≤ q) (13)

bGN1(q) =
1

N1

N1X
i=1

I (Q ≤ q) (14)

where N0 (N1) is the size of the sample with Zi = 0 (Zi = 1).

In the analysis, we utilize two IVs. The primary instrument, based on Butcher and Case (1994) and

Angrist and Evans (1998), is an indicator of whether the first two children are of the same gender. For

robustness, we also utilize a second instrument which is unity if the first two children are both girls. As

shown in Rosenzweig and Wolpin (2000), for the gender composition of children to be a valid exclusion

restriction certain assumptions are required. Specifically, we require that (i) the sex ratio of children, r,

enters a family’s utility function in (1), (ii) child-rearing costs do not vary with r (i.e., δ = 0 in (3)) and/or

consumption, c, and per child quality, q are strongly separable in (1), and (iii) per child quality, q, and r

are strongly separable in (1). We assess the validity of these requirements below (through examination of

the first-stage regressions and use of overidentification tests).

3.2 Inference

The asymptotic distribution of the test statistics, d and s, depend on the unknown underlying distributions,

F and G. In the analysis below, we first approximate the empirical distribution of the test statistics using

simple bootstrap techniques (Maasoumi and Heshmati 2000; Maasoumi and Millimet 2005). To evaluate

the null Ho : d ≤ 0, we first report in our tables whether the observed empirical distributions are seemingly

rankable by FSD or SSD; we present the sample values of max{d1}, max{d2}, bd, max{s1}, max{s2}, andbs (see Appendix A). We then obtain simple bootstrap estimates of the probability that d lies in the non-
positive interval (i.e. Pr{d ≤ 0}) using the relative frequency of {bd∗ ≤ 0}, where bd∗ is the bootstrap estimate
of d (500 repetitions are used).9 If this interval has a large probability, say 0.90 or higher, and bd ≤ 0, we
may infer dominance to a desirable degree of confidence. If this interval has a low probability, say 0.10 or

smaller, and bd > 0, we may infer the presence of significant crossings of the empirical CDFs, implying an

inability to rank the outcomes. Finally, if the probability lies in the intermediate range, say between 0.10

9Note, we also report simple bootstrap estimates of the Pr{d∗ ≥ bd}. These are provided to facilitate visualization of the
simple bootstrap distribution.
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and 0.90, there is insufficient evidence to distinguish between equal and unrankable distributions. This

is a classic confidence interval test; specifically, we are assessing the likelihood that the event d ≤ 0 has

occurred. Similarly, we estimate Pr{s ≤ 0} to evaluate the second order dominance proposition given by

Ho : s ≤ 0.10

As an alternative, we also evaluate the less decisive dominance proposition Ho : d = 0 via the Linton

et al. (2005) recentered bootstrap procedure, which the authors demonstrate provides a consistent test. It

is known that bd converges to d under general conditions (likewise for the SSD statistic). However, under
the null Ho : d = 0, centering of computations around their corresponding sample values introduces second

order errors that are negligible for first order (asymptotic) approximations, but is desirable for removing

some uncertainties due to estimation of unknown parameters and distributions. This is the source of

improvement in bootstrap power gained from recentering. The other source of improvement arising from

recentering pertains to the technique’s robustness to within-sample dependence.

Utilizing the algorithm detailed in Appendix A, we obtain recentered bootstrap p-values in the classical

sense as the relative frequency of {bd∗∗ > bd}, where bd∗∗ is the recentered bootstrap estimate of d. If the
Pr{bd∗∗ > bd} is low, say 0.10 or smaller, we reject the null Ho : d = 0; if this p-value is greater than 0.10,

we fail to reject the null.11 It is important to emphasize, however, that while rejection of the null provides

valuable insight in the recentered bootstrap case, failure to reject the null provides less information. If

we reject the null and bd < 0, we may infer dominance to a desirable degree of confidence. Conversely, if

we reject the null and bd > 0, we may infer unequal, but unrankable, distributions. These are both strong
findings, as the former (latter) indicates that all (not all) increasing social welfare functions will concur

on the relative rankings of the distributions in question. On the other hand, failure to reject the null

merely implies that we cannot eliminate the possibility that F = G; strict dominance also cannot be ruled

out to some degree of confidence. Seen in this light, the recentered bootstrap is a conservative test. In

10Note, we do not impose and test the Least Favorable Case (LFC) of equality of the distributions. This could be done by

combining the data on X and Y and bootstrapping from the combined sample (e.g., Abadie 2002). Our bootstrap samples

still contain N (M) observations from X (Y ). As argued in Linton et al. (2003), working under LFC has some undesirable

power consequences as it can produce biased tests that are not similar on the boundary of the null. This happens when the

boundary of the null itself is composite. Following Maasoumi and Heshmati (2000) and Maasoumi and Millimet (2005), we

are also reporting the maximum test sizes associated with our (conservative) critical value of zero, which is clearly on the

boundary of the null that includes the LFC. Thus, the bootstrap probabilities reported represent the critical levels associated

with this non-rejection region. Such critical levels can be shown to be conservative since, in the limit, they are at least as

large as the corresponding levels for the asymptotic test on the boundary (Linton et al. 2003).
11We also report the Pr{bd∗∗ ≤ 0} in the tables. This allows the reader to see the significance level (size) of the test associated

with the special critical value ‘zero.’ In our tables, these are obtained simply as Pr{bd∗∗ > 0} = 1− Pr{bd∗∗ ≤ 0}.
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the discussion of the results, we focus more heavily on the more decisive simple bootstrap for inference.

Similarly, we report the relative frequency of {bs∗∗ > bs} and {bs∗∗ > 0} to evaluate the null Ho : s = 0.

A final, necessary comment pertains to inference in the FR tests (i.e., those incorporating the Oaxaca-

Blinder decomposition). Due to the usage of a common set of coefficient estimates in obtaining both residual

distributions being compared, there necessarily exists between-sample dependence. For example, the FR

test compares the distributions of b�i1 and b�FRi2 . The former depends on {qi1,mi1, β1(q1,m1)}, where q1 and

m1 represent the full data vector for q and m for the k = 1 sample; the latter, b�FRi2 = qi2−mi2β1, depends

on {qi2,mi2, β1(q1,m1)}. This source of dependence is atypical. Between-sample dependence usually arises

when the same individuals appear in the two samples being compared (e.g., distributions of pre- and post-

tax incomes for a sample of individuals). To handle this more common type of between-sample dependence,

pairwise (or ‘clustered’) bootstrap samples are drawn in order to maintain the dependence in the resampled

data (Linton et al. 2005). In the current situation, the between-sample dependence is maintained by re-

estimating the first-stage equations (9) and (10) on each bootstrap resample. Specifically, by resampling N

observations {q∗i1,m∗i1} and M observations {q∗i2,m∗i2} nonparametrically and re-estimating (9), we obtain

the resampled distributions of b�∗i1 and b�FR∗i2 , where the former depends on {q∗i1,m∗i1, β∗1(q∗1,m∗1)} and the

latter depends on {q∗i2,m∗i2, β∗1(q∗1,m∗1)}. Thus, as in the usual pairwise bootstrap case, the source of

between-sample dependence is maintained in the resampling procedure.

4 Data

The data are obtained from Indonesian Family Life Survey (IFLS), a large-scale longitudinal survey con-

ducted jointly by RAND and the Center for Population and Policy Studies (CPPS) at the University

of Gadjah Mada. The IFLS provides a rich data source based on a sample of households representing

about 83% of the Indonesian population living in 13 of the nation’s 26 provinces in 1993. Three waves

exist presently: 1993, 1997, and 2000 (see Strauss et al. (2004a, 2004b) for a complete description of the

surveys). We utilize the 2000 wave, which is the most current survey containing physical assessments of

children, and form a sample of roughly 7,300 children aged ten and under, with at least one identifiable

birth parent in the survey, and who come from a household with at least two children.

Two outcomes of interest are examined: child’s height and child’s weight. However, since children are

still growing, comparing anthropometric data from children of different ages is complicated (Vidmar et

al. 2004). Thus, we standardize the raw data on height and weight to the reference population for the

child’s age and sex utilizing the 1990 British Growth Reference data. The quantity of children is defined
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as the number of children ‘belonging’ to a given set of parents. Assuming that couples take into account

their spouses’ fertility history, this definition includes any children from previous marriages. For example,

if one (or both) parents were previously married and entered the current marriage with children from

the previous union, then these children are used when computing the number of siblings. Our definition

excludes children ‘belonging’ to other couples who may share a common residence. Finally, our definition

includes children ‘belonging’ to the couple, but not currently residing in the household if the child resided

in the household during the 1993 or 1997 wave. Once the number and identity of siblings is established,

we create a dummy variable, MoreThan2, equal to one if the household has more than two children and

zero otherwise (recall, the sample is limited to households with at least two children). To implement the

IV SD tests, we also create two binary variables based on the gender of children: SameSex2 is equal to one

if the first two children are of the same sex (zero otherwise), and Daughter2 is equal to one if the first two

children are female (zero otherwise).

To obtain the partial and full residuals, we utilize an extensive set of individual, parental, and household

controls. Specifically, we include the following variables (in addition to a constant term):

Individual: age in months, a gender dummy, birth order dummies, days in bed due to poor health, dummy

variables for illness (cough, fever, and diarrhea) reported in the past four weeks prior to survey (to

capture fluctuations in health in the very short-term);

Parental: separate dummy variables for mother’s and father’s education (less than primary school, junior

high school, senior high school, university, and other), mother’s and father’s height, mother’s and

father’s weight, mother’s and father’s age, mother’s and father’s work status dummy variables (work

or not), separate dummy variables for mother’s and father’s religion (Islam, Protestant, Catholic,

Hindu), dummy indicating whether or not parents’ height are missing, dummy indicating whether or

not father’s age is missing;

Household: dummy variable for ownership of farm (own or not), dummy variable indicating if the house-

hold head is female, dummy variables for decisionmaking powers concerning children’s health (jointly

made by husband and wife, only made by husband, only made by wife, and other), dummy variables

for type of dwelling (single unit single level, single unit multiple levels, duplex single level, duplex

multiple level, multiple unit single level, and other), house size, number of rooms in the house,

dummy variables for type of floor materials in the house, dummy variables for type of wall materials

in the house, dummy variables for water source for the house, dummy variable indicating if water is

boiled prior to consumption, dummy variables for type of sanitary conditions of household, region
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dummy (rural or urban), province dummy variables (North Sumatra, West Sumatra, South Sumatra,

Lapung, Jakarta, West Java, Central Java, Yogyakarta, East Java, Bali, West Nusa Tenggara, South

Kalimantan, and South Sulawesi), and a dummy variable indicating whether or not house size is

missing.12

The inclusion of parental height and weight is noteworthy. As noted in Thomas et al. (1990, 1996),

parental health status, as reflected in anthropometric measures, may have a direct effect on child health

through their impact on birthweight. In addition, parental measures may partially capture household

unobservables, lending further credibility to our causal interpretation of the results reported below.

The IFLS also collected very extensive information at the community level. However, this community

information is only available for some communities. As a result, rather than limiting our sample size, we

perform the PR and FR SD tests twice, once conditioning on just the previous individual, parental, and

household characteristics, and once conditioning on the previous sets of variables plus community charac-

teristics. Specifically, we include the number of various health facilities (hospitals, private practitioners,

integrated health posts) and schools (elementary schools, junior high schools, and senior high schools) in

the community, as well as the minimum distance to each type of health facility and school.

Table B1 (in Appendix B) presents summary statistics. On average, children in a household with two

children are taller and weigh more than those in a household with more than two children, consonant

with the quantity-quality trade-off, although they are also nearly a year older. Before turning to the

distributional results, Table B2 presents the results from standard parametric OLS and IV regressions.

This is useful not only for comparison to the SD results, but also to assess the representativeness of the

sample. The OLS results indicate that moving from a two child household to one with more than two

children is associated with a small, statistically significant reduction in both height-for-age and weight-for-

age. Treating fertility as endogenous, but excluding the control variables, we find a much larger adverse

impact of fertility on both height-for-age and weight-for-age, although the coefficients are only statistically

significant for weight-for-age. Moreover, we also find that the instruments are positive and statistically

significant, as expected, in the first-stage regressions (especially SameSex2), and that when we utilize

both instruments, the instruments easily pass the Sargan overidentification test. This is comforting given

the restrictions required for the instruments to be valid discussed previously. Finally, when we estimate

the parametric models by IV and include the control variables, the adverse impact of fertility becomes

even larger in magnitude, continues to be statistically significant for weight-for-age, and the instruments

12Missing values are replaced with sample means.
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continue to fair well in the first-stage and according to the Sargan test. Given these baseline results, we

now turn to discussion of the SD results.

5 Results

5.1 Unconditional Tests

The first set of tests compares the unconditional distributions, treating fertility (MoreThan2) as either

exogenous or endogenous. The results are displayed in Tables 1 (height-for-age) and 2 (weight-for-age),

with Panel A containing the results treating fertility as exogenous and Panels B and C utilize SameSex2

and Daughter2 as an instrument, respectively. The corresponding CDFs, integrated CDFs, and differences

between the CDFs at each quantile are plotted in Figures 1 (height-for-age) and 2 (weight-for-age).

Treating fertility as exogenous (Panel A in Tables 1 and 2), the distributions of height-for-age and

weight-for-age for children in households with only two children are observed to first order dominate the

corresponding distribution for children in larger households.13 However, the simple bootstrap indicates

that only the distributions for weight-for-age can be ranked to a degree of statistical certainty, and then

only in the second order sense (height-for-age: Pr(s ≤ 0) = 0.846; weight-for-age: Pr(s ≤ 0) = 0.930) The

recentered bootstrap fails to reject the null Ho : d = 0 or s = 0 for both health measures, indicating that

strict dominance or equal distributions cannot be rejected. Taken altogether, then, the results treating

fertility as exogenous suggest a statistically significant, second order ranking in favor of smaller households

for weight-for-age, and fail to provide evidence of a statistically significant ranking for height-for-age.

The observed FSD ranking combined with the statistically significant SSD ranking for weight-for-age

is an extremely powerful result. First, it implies that the quantity-quality trade-off does hold at the

distributional level (when fertility is treated as exogenous and no covariates are included). Second, the

results show that any policymaker whose welfare function is increasing in child health and averse to health

inequality will favor reductions fertility. Third, the fact that there are differences between the results

for height and weight suggest that the quantity-quality trade-off may differentially operate in short- and

long-term given what each health measure captures.

Examining the actual plots (Figures 1 and 2, top row) provides additional detail, especially with respect

to the magnitude and uniformity of the quantity-quality trade-off. In particular, the plots reveal little actual

13While the CDFs for height-for-age cross in the extreme lower tail in the top row of Figure 1 (favoring larger households

and thereby precluding an FSD or SSD ranking in favor of small households), Table 1 reports a finding of FSD (and, hence,

SSD) because of the procedure utilized, which ignores the extreme lower and upper tails (see Appendix A).
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difference between the distributions for height-for-age and weight-for-age; in both cases, larger household

size is associated with a roughly 0.2 to 0.3 decline in health, and this effect is approximately uniform across

the distribution. In light of the theoretical model, this is consonant with the production function in (2)

being additively separable for both anthropometric measures, as in Becker and Tomes (1976).

Although interesting, the previous results treat fertility as exogenous (and fail to control for any co-

variates). Thus, we now turn to Panels B (SameSex2) and C (Daughter2) in Tables 1 and 2 which make

use of the two instruments. Using the preferred instrument, SameSex2, we observe a second order ranking

favoring small households for both height-for-age and weight-for-age.14 However, in both cases, the simple

bootstrap indicates that this ranking is not statistically significant (height-for-age: Pr(s ≤ 0) = 0.798;

weight-for-age: Pr(s ≤ 0) = 0.858), and the recentered bootstrap fails to reject the null Ho : s = 0 (height-

for-age: p-value = 0.996; weight-for-age: p-value = 0.998), indicating that strict second order dominance

or equal distributions cannot be rejected. Examination of the plots in Figures 1 and 2 (second row) con-

tinues to indicate that the differences in the CDFs are fairly uniform across the entire health distribution,

consonant with the assumption of additive separability for the health production function. Finally, when

using the second instrument, Daughter2, we do not observe any ranking in the first or second degree sense.

Moreover, the recentered bootstrap rejects the null Ho : d = 0 and Ho : s = 0 for both health outcomes

(height-for-age: FSD p-value = 0.022; SSD p-value = 0.012; weight-for-age: FSD p-value = 0.040; SSD

p-value = 0.020), implying the presence of significant crossings. Examination of the plots (Figures 1 and

2, bottom row), however, suggests that any differences in the health distributions across large and small

households is minimal.

Just as the statistically significant second order ranking for weight-for-age when sibship size is treated

as exogenous is a strong result, the lack of any statistically significant rankings according to the IV tests is

also strong; conclusions regarding the empirical relevance of the quantity-quality trade-off are not robust

across all social welfare functions in the class U2. Moreover, the fact that some differences arise — although

they may not be statistically meaningful — across the results based on SameSex2 versus the Daughter2

instruments suggests that the impact of household size is heterogeneous in the population. Specifically,

the trade-off does not appear to be identical in the subpopulation of households induced to have a third

child because the first two children are both daughters, as opposed to both sons.

To assess the sensitivity of these unconditional results, we turn to the residual-based SD test results.

In particular, while the sex composition of children is arguably uncorrelated with most other determinants

14We consider SameSex2 the preferred instrument for the unconditional tests since it yielded higher first-stage F-statistics

in the parametric models with no other covariates (see Table B2 in Appendix B).
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of child health, the instrument may be correlated with the gender of the first two children unless the

probability of having a son is exactly one-half (Angrist and Evans 1998). Since this is not always the

case in the sample (see Table B1), we analyze the distributions of child health purged of the effects of the

gender of the first two children, as well as the other potential determinants of child health discussed in the

previous section.

5.2 Partial Residual Tests

Tables 3 (height-for-age) and 4 (weight-for-age) display the PR test results, which ignore differences in the

returns to health inputs across household size.15 The differences in the CDFs are displayed in column 1 of

Figures 3 (height-for-age) and 4 (weight-for-age). Surprisingly, the results for the two health outcomes are

now in total opposition. In terms of height-for-age, we observe at least a marginally statistically significant

FSD ranking in favor of smaller households according to the simple bootstrap regardless of whether fertility

is treated as exogenous (Pr(d ≤ 0) = 0.916) or endogenous (SameSex2 IV: Pr(d ≤ 0) = 0.930; Daughter2

IV: Pr(d ≤ 0) = 0.890). In all three cases, the recentered bootstrap fails to reject the null Ho : d = 0,

indicating that strict dominance or equal distributions cannot be rejected. Finally, in all three cases, the

plots in Figure 3 indicate the impact of fertility continues to be approximately uniform across the entire

distribution.

Turning to the results for weight-for-age, we now find strong results in favor of larger households, sug-

gesting the possibility of a short-run gain to more siblings. Specifically, we obtain a statistically significant

FSD ranking in favor of households with more than two children according to the simple bootstrap re-

gardless of whether fertility is treated as exogenous (Pr(d ≤ 0) = 0.912) or endogenous (SameSex2 IV:

Pr(d ≤ 0) = 0.934; Daughter2 IV: Pr(d ≤ 0) = 0.964). As with height-for-age, the less decisive recentered

bootstrap fails to reject the null Ho : d = 0, indicating that strict dominance or equal distributions cannot

be rejected. Lastly, as with height-for-age, the plots in Figure 4 indicate the apparent beneficial impact of

fertility is roughly uniform across the entire distribution. Again, these results are consistent with a health

production function that is additively separable, as in Becker and Tomes (1976).

Although not shown, the contrasting results is attributable to the change in rankings of the intercepts

across the first-stage regressions for the two health outcomes. For height-for-age (weight-for-age), the

intercept is larger for smaller (larger) households, and this drives the rankings. However, because the PR

15The first-stage regressions used to obtain the results in Tables 3 — 6 do not control for community attributes. We discuss

the results obtained controlling for community characteristics below. In addition, the first-stage regression results are not

reported, but are available upon request.
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tests only account for differences in the intercept, while ignoring differences in the slope coefficients, we

now turn to the more complete FR test results.

5.3 Full Residual Tests

The FR test results are displayed in Tables 5 (height-for-age) and 6 (weight-for-age); the corresponding

differences in the CDFs are displayed in column 1 of Figures 5 (height-for-age) and 6 (weight-for-age).

Accounting for differences in all the first-stage parameters, the results for the two health outcomes are once

again in virtual agreement, implying little difference between relatively long- versus short-term measures

of health. In terms of height-for-age, we are unable to rank the distributions when fertility is treated as

exogenous; the recentered bootstrap marginally rejects the null Ho : s = 0 (p-value = 0.114), indicating the

presence of significant crossings. However, when fertility is treated as endogenous, we observe a statistically

significant SSD ranking in favor of smaller households using the SameSex2 instrument and the simple

bootstrap (Pr(s ≤ 0) = 0.970). While we also observe a SSD ranking using the Daughter2 instrument, the

result is not statistically significant according to the simple bootstrap (Pr(s ≤ 0) = 0.696), confirming the

previous unconditional results that suggest differences in the trade-off across the subpopulations affected

by each of the two instruments. Finally, in all instances, the plots in Figure 5 indicate that the beneficial

impact of lower fertility is approximately uniform across the entire distribution.

In terms of weight-for-age, two differences arise. First, when fertility is treated as exogenous, we now

observe a statistically significant SSD ranking in favor of smaller households according to the simple boot-

strap (Pr(s ≤ 0) = 0.956). Second, while the IV results confirm the previous statistically significant SSD

ranking for height-for-age using the SameSex2 instrument, the impact of fertility appears more pronounced

at the lower end of the distribution, suggesting a larger effect of fertility reductions on the least healthy

children (as measured by age appropriate weight). This non-uniformity provides some evidence that the

health production function may not be additively separable for weight-for-age. Moreover, since weight-

for-age may reflect short-term changes in health status, whereas height-for-age only reflects long-term

nutritional status, these results suggest important differences in the production of child health and, hence,

the quantity-quality trade-off between the short- and the long-term.

5.4 Sensitivity Analysis

As discussed in Section 4, community attributes that are likely to influence fertility and human capital

investments are only available for a portion of the sample utilized thus far. While these attributes are

most likely uncorrelated with sibling sex composition, we nonetheless assess the robustness of our results
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by conducting the PR and FR tests adding these variables to the first-stage covariate set. The results

are displayed in Tables B3 — B6 in Appendix B; the corresponding plots are given in column 2 of Figures

3 — 6. The results are qualitatively unchanged. In particular, the preferred results based on the FR SD

tests and using the SameSex2 instrument continue to indicate a statistically significant SSD ranking in

favor of smaller households. As such, any policymaker with a social welfare function that is increasing

and concave in child health will prefer reductions in fertility. This is a much more robust finding that

previous parametric investigations of the quantity-quality trade-off based solely on the (conditional) mean.

Moreover, the plots continue to affirm the uniformity of the impact of fertility across the entire health

distribution for height-for-age, and a marginally larger trade-off in the lower tail for weight-for-age. As

noted in the theoretical model, this suggests that the Becker and Tomes (1976) assumption of additive

separability between the health endowment and other health inputs in the health production function may

not hold for weight.

6 Conclusion

Although the theoretical trade-off between the quantity and quality of children is well-established, empirical

evidence supporting such a causal relationship is limited. Moreover, empirical studies that have been

undertaken typically focus on education as a measure of child quality and have been predominantly limited

to linear regression analysis. While such results are easily interpretable, at best they provide evidence of

the impact of fertility on measures of child-specific human capital investments only at the (conditional)

mean. In contrast, this study analyzes the impact of fertility over the entire distribution of two measures

of health using data from Indonesia, while accounting for the potential endogeneity of fertility. Our

distributional approach utilizes all available information in the data, makes explicit the welfare framework

being employed, and assesses several potential forms of heterogeneity in the trade-off. The results yield

three main conclusions. First, we find that the distributions of weight-for-age can be ranked, but only in

the second-degree sense, when fertility is treated as exogenous; the height-for-age distributions cannot be

ranked in either the first- or second-degree sense. Second, when fertility is treated as endogenous, we obtain

statistically significant rankings favoring smaller households for both health outcomes, although only in the

second-degree sense. Thus, only by incorporating the ‘dispersion’ of child health can one obtain uniform

welfare rankings across a wide class of social welfare functions. Finally, we find evidence consistent with

several types of heterogeneity in the magnitude of the quantity-quality trade-off: across the distribution

of weight-for-age, between the short-term and long-term, and across different subpopulations. Although
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insightful, future research is necessary to answer questions generated by this analysis. First, how robust are

the results to alternative instruments that identify the trade-off from other sub-populations of compliers?

Second, utilizing other instruments for identification, are there gains from reducing fertility from, say, six

children in a family to five, or from two children to only one? Nonetheless, answering these questions

within a distributional framework is necessary for understanding the nature of intrahousehold allocation

as well as sound policymaking.
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A Appendix: Technical Details

A.1 Computation of bd and bs
The test for FSD requires:

(i) computing the values of bF (zj) and bG(zj) for zj , j = 1, ..., J , where J denotes the number of points
in the support Z that are utilized (J = 500 in the application, where the points are equally spaced

beginning at the first percentile and ending at the 99th percentile of the empirical support, Z, to

focus attention away from extreme values),

(ii) computing the differences d1(zj) = bF (zj)− bG(zj) and d2(zj) = bG(zj)− bF (zj), and
(iii) finding bd =q NM

N+M min {max{d1},max{d2}}.

If bd ≤ 0 (to a degree of statistical certainty), then the null of FSD is not rejected. Furthermore, if bd ≤ 0
and max{d1} < 0, then X FSD Y . On the other hand, if bd ≤ 0 and max{d2} < 0, then Y FSD X. Ifbd = max{d1} = max{d2} = 0, then the (estimated) distributions of X and Y are identical. The test for

SSD requires the following additional steps:

(i) calculating the sums s1j =
Pj

k=1 d1(zk) and s2j =
Pj

k=1 d2(zk), j = 1, ..., J , and

(ii) finding bs =q NM
N+M min {max{s1j},max{s2j}}.

If bs ≤ 0 (to a degree of statistical certainty), then the null of SSD is not rejected. Moreover, if bs ≤ 0 and
max{s1j} < 0, then X SSD Y ; otherwise, if max{s2j} < 0, then Y SSD X.

A.2 The Recentered Bootstrap

To obtain recentered bootstrap p-values, we compute the relative frequency of {bd∗∗ > bd}, where bd∗∗ is the
recentered bootstrap estimate of d. The recentering algorithm requires:

(i) generating bootstrap samples of size N (M) from X (Y ),

(ii) computing the values of bF ∗(zj) and bG∗(zj) for zj , j = 1, ..., J , where the values of zj used to analyze
the original sample are utilized,

(iii) computing the differences dc1(zj) =
h bF ∗(zj)− bG∗(zj)i−h bF (zj)− bG(zj)i and dc2(zj) = h bG∗(zj)− bF ∗(zj)i−h bG(zj)− bF (zj)i, and

(iv) finding bd∗∗ =q NM
N+M min {max{dc1},max{dc2}}.

We then compute the relative frequency of {bd∗∗ > bd}, where bd is the sample estimate of d.



Table B1.  Summary Statistics.

Variable Mean SD Obs Mean SD Obs
Height for age (z -score) -1.78 1.26 3486 -1.51 1.32 2276
Weight for age (z -score) -1.79 1.28 3490 -1.57 1.33 2292
First two children are same sex (1 = yes) 0.53 0.50 4409 0.49 0.50 2863
First two children are daughters (1 = yes) 0.26 0.44 4409 0.24 0.42 2863
Age in months 74.81 37.70 4409 63.95 37.11 2768
Gender (1 = male) 0.52 0.50 4108 0.51 0.50 2863
First Child's Gender (1 = male) 0.50 0.50 4409 0.50 0.50 2863
Second Child's Gender (1 = male) 0.50 0.50 4409 0.52 0.50 2863
Father's Education
        Less than elementary school 0.53 0.50 4409 0.36 0.48 2863
        Junior high school 0.14 0.34 4409 0.16 0.36 2863
        Senior high school 0.17 0.37 4409 0.26 0.44 2863
        University 0.09 0.28 4409 0.11 0.32 2863
        Other 0.02 0.14 4409 0.02 0.13 2863
Mother's Education
        Less than elementary school 0.66 0.47 4409 0.45 0.50 2863
        Junior high school 0.12 0.33 4409 0.19 0.39 2863
        Senior high school 0.14 0.35 4409 0.27 0.44 2863
        University 0.05 0.22 4409 0.08 0.27 2863
        Other 0.01 0.10 4409 0.01 0.10 2863
Father's Height 161.41 5.18 4409 162.22 5.43 2863
Mother's Height 150.49 5.13 4409 150.87 4.84 2863
Father's Weight 56.39 8.17 4409 57.06 8.17 2863
Mother's Weight 52.03 9.19 4409 51.52 8.11 2863
Father's Age 40.98 7.48 4409 34.97 6.09 2863
Mother's Age 35.85 6.14 4409 30.14 5.37 2863
Father's Work Status (1 = Work) 0.91 0.28 4409 0.89 0.31 2863
Mother's Work Status (1 = Work) 0.55 0.50 4409 0.49 0.50 2863
Own Farm (1 = yes) 0.37 0.48 4409 0.37 0.48 4409
Father's Religion
        Islam 0.82 0.39 4409 0.81 0.40 2863
        Protestant 0.06 0.23 4409 0.03 0.16 2863
        Catholic 0.01 0.11 4409 0.02 0.13 2863
        Hindu 0.04 0.19 4409 0.05 0.22 2863
Mother's Religion
        Islam 0.87 0.34 4409 0.88 0.32 2863
        Protestant 0.06 0.23 4409 0.03 0.17 2863
        Catholic 0.01 0.11 4409 0.02 0.13 2863
        Hindu 0.04 0.19 4409 0.05 0.22 2863
Female Household Head (1 = yes) 0.09 0.29 4409 0.12 0.33 2863
Decision on Children's Health
        Jointly made by husband and wife 0.01 0.11 4409 0.02 0.13 2863
        Only made by husband 0.11 0.31 4409 0.09 0.29 2863
        Only made by wife 0.06 0.24 4409 0.05 0.23 2863
        Otherwise 0.56 0.50 4409 0.56 0.50 2863
Days in Bed Due to Health Problem 0.36 1.39 4409 0.36 1.43 2863
Cough (1 = yes) 0.31 0.46 4409 0.37 0.48 2863
Fever (1 = yes) 0.01 0.11 4409 0.01 0.12 2863
Diarrhea (1 = yes) 0.19 0.39 4409 0.20 0.40 2863
Type of Dwelling
      Single unit single level 0.73 0.45 4409 0.76 0.42 2863
      Single unit multiple levels 0.07 0.26 4409 0.07 0.26 2863
      Duplex single level 0.06 0.24 4409 0.07 0.26 2863
      Duplex multiple level 0.01 0.08 4409 0.01 0.08 2863
      Multiple unit single level 0.03 0.16 4409 0.03 0.17 2863
      Others 0.10 0.30 4409 0.05 0.22 2863
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Table B1 (cont.).  Summary Statistics.

Variable Mean SD Obs Mean SD Obs

House Size 76.26 68.89 4409 82.44 175.82 2863
Number of Rooms 5.41 2.57 4409 5.42 2.62 2863
Floor Materials
     Ceramic/Marble/Granite/Stone 0.14 0.34 4409 0.18 0.39 2863
     Tiles/Terrazzo 0.21 0.40 4409 0.21 0.41 2863
     Cement/Bricks 0.36 0.48 4409 0.36 0.48 2863
     Lumber/Board 0.16 0.37 4409 0.12 0.32 2863
     Dirt 0.12 0.32 4409 0.12 0.33 2863
Wall Materials
     Masonry (cement/brick) 0.59 0.49 4409 0.66 0.47 2863
     Lumber/Board 0.29 0.45 4409 0.25 0.43 2863
     Bamboo/Woven/Mat 0.12 0.32 4409 0.09 0.29 2863
Water sources for drinking
      Aqua/ Air mineral etc. 0.23 0.42 4409 0.26 0.44 2863
      Pipe water 0.24 0.43 4409 0.30 0.46 2863
      Well/Pump 0.34 0.47 4409 0.29 0.46 2863
      Well water 0.08 0.26 4409 0.07 0.25 2863
      Rain water 0.05 0.23 4409 0.03 0.17 2863
      Others 0.02 0.14 4409 0.03 0.16 2863
Boil Water (1 = yes) 0.89 0.31 4409 0.91 0.28 2863
House surrounded by 
        human/animal waste (1 = yes) 2.79 0.61 4406 2.86 0.51 2863
House surrounded by 
       piles of trash (1 = yes) 2.71 0.70 4409 2.76 0.65 2863
House surrounded by 
       stagnant water (1 = yes) 2.77 0.64 4409 2.81 0.59 2863
Stable under/next to 
       house (1 = yes) 2.52 0.85 4406 2.60 0.80 2863
Sufficient ventilation (1 = yes) 1.51 0.87 4409 1.42 0.81 2863
Yard is cleaned up (1 = yes) 1.71 0.96 4409 1.57 0.90 2863
House has a moderately 
       sized yard (1 = yes) 1.78 0.98 4409 1.77 0.97 2863
House has kitchen 
       outside (1 = yes) 2.45 0.89 4406 2.48 0.88 2863
Region (1 = urban) 1.57 0.50 4409 1.51 0.50 2863
Number of Schools
     Elementary school 8.26 3.95 3501 8.76 4.45 2066
     Junior high school 7.18 3.11 3501 7.66 3.29 2066
     Senior high school 7.75 4.28 3496 8.59 4.72 2059
Minimum Distance of Schools
     Elementary school 0.38 0.56 3463 0.33 0.50 2050
     Junior high school 1.86 2.86 3485 1.55 1.97 2054
     Senior high school 4.03 4.71 3396 3.42 4.37 2028
Number of Health Facilities
     Hospital 2.54 1.70 3258 2.80 1.91 1969
     Integrated health post 8.36 6.34 3493 9.36 6.35 2064
     Private practice 27.21 11.07 3501 28.78 11.31 2066
Minimum Distance of Health Facilities
     Hospital 19.57 32.19 3128 15.42 25.84 1903
     Integrated health post 0.62 3.82 3424 0.37 1.63 2035
     Private practice 0.45 0.73 3475 0.44 0.71 2064
Notes:  Data from Indonesia Family Life Survey 3 wave.  Appropriate sample weights utilized.  Additional controls not listed include 13 province
dummies, ten birth order dummies, and dummy variables indicating missing values for father's height, mother's height, father's age, and house size.

More than Two Children Two Children



Table B2.  Estimates of Average Effects: OLS and Instrumental Variables.

Model Coefficient SE Coefficient SE

OLS -0.101† (0.048) -0.103† (0.050)

IV (No Controls):
  Same Sex 2 -1.087 (0.674) -1.509† (0.750)

    F-test

  Daughter 2 -0.673 (1.306) -1.438 (1.573)

    F-test

  Same Sex 2, -1.106 (0.673) -1.513† (0.746)
    Daughter 2

    F-test

    Sargan Test

IV (With Controls):
  Same Sex 2 -2.328 (1.428) -2.996‡ (1.569)

    F-test

  Daughter 2 -2.328 (1.428) -2.996‡ (1.569)

    F-test

  Same Sex 2, -2.278 (1.417) -2.975‡ (1.563)
    Daughter 2

    F-test

    Sargan Test

NOTES:  Control variables include:age in months, gender, gender of the first child, gender of the second child (except in the models that use Same Sex 2  
and Daughter 2 as instruments), birth order, days in bed, cough in the past four weeks, fever in the past four weeks, diaarrhea in the past four weeks, parents' 
education, parents' height, parents' weight, parents' working status, parents' religion, whether or not household head is female, household decision making 
on children's health, household sanitary conditions, dwelling, house size, floor, wall, water sources, whether or not boil water, whether or not own a farm, 
urban/rural dummy, province dummies, whether or not parents' height are missing, whether or not father's age is missing, and whether or not house size is
missing. F-test refers to the test of significance of the instrument(s) in the first-stage. Sargan test is an overidentification test. Appropriate sample weights 
used.  † (‡) indicates statistical significance at the 5% (10%) level.  

[p = 0.70]
χ2 = 0.46
[p = 0.50]

F  = 9.13
[p = 0.00]

F  = 9.13
[p = 0.00]

F  = 4.57
[p = 0.01]

χ2 = 0.15

F  = 8.67
[p = 0.00]

F  = 4.35
[p = 0.01]

Height-for-Age Weight-for-Age

F  = 8.67
[p = 0.00]

F  = 4.05 F  = 3.40
[p = 0.04] [p = 0.07]

F  = 8.25 F  = 7.75

χ2 = 0.14 χ2 = 0.003
[p = 0.71] [p = 0.96]

[p = 0.00] [p = 0.00]

F  = 16.40 F  = 15.30
[p = 0.00] [p = 0.00]



Table B3.  Partial Residual Stochastic Dominance Tests: Height-for-Age, Alternative Control Set.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  First-stage regressions include controls for:age in months, gender, gender of first two children, birthorder, days in bed, cough in the past four weeks, fever in the past four weeks, diaarrhea in the past four weeks, 
parents' education, parents' height, parents' weight, parents' working status, parents' religion, whether or not household head is female, household decision making on children's health, household sanitary conditions, 
dwelling type, house size, number of rooms in house, floor type, wall type, drinking water source, whether or not boil water, whether or not own a farm, urban/rural dummy, province dummies, whether or not parents' height
are missing, whether or not father's age is missing, whether or not house size is missing, number of elementary schools, junior high schools, and senior high schools, minimum distance of elementary schools, junior
high schools, and senior high schools, number of hospitals, integrated health posts, and private practictians, and minimum distance of hospitals, integrated health posts, and private practictians. See Table 1 and text for 
further details.

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered

Bootstrap Bootstrap

X FSD Y X FSD Y X FSD Y

Bootstrap Bootstrap Bootstrap Bootstrap

-0.408 -0.228 -0.389

20.759 14.096 25.579

-0.408 -0.228 -0.389
0.606 0.744 0.582 0.686 0.750 0.578

0.334 0.742 0.320 0.686

0.824 1.000
0.940 0.758 0.902 0.702

0.164 0.762

0.914 0.772

0.404 0.076

0.586 0.998

0.456 0.094 0.526 0.146

0.482 0.996

0.824 0.998

-0.478 -0.434 -0.824

0.414 0.996 0.198 0.988

5889.007

-0.478 -0.434 -0.824
0.656 0.794

4032.949 2689.212

0.756 0.664

0.346 0.856 0.328 0.792 0.220 0.842

0.630 0.824

0.976 0.952 0.984 0.916

0.402 0.026

0.804 0.930 0.518 0.918
0.976 0.938
0.570 0.970

0.570 0.738
0.452 0.060
0.548 0.860 0.280 0.820

0.526 0.102



Table B4.  Partial Residual Stochastic Dominance Tests: Weight-for-Age, Alternative Control Set.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Table B3.

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered

Bootstrap Bootstrap

Y SSD X Y FSD X Y FSD X

Bootstrap Bootstrap Bootstrap Bootstrap

13.815

-0.367

0.122 29.896

3.227 -0.569

-0.367
0.268 0.746

0.122 -0.569
0.410 0.764 0.072 0.740

0.468 0.774 0.900 0.744

0.558 0.088
0.878 0.792 0.972 0.752
0.548 0.198 0.552 0.068

0.620 0.652

0.888 0.756

0.844 1.0000.490 0.142 0.732 0.998
0.816 0.998

2927.062

0.076 0.136 0.726 0.998

-0.169 7325.597

-0.367

-0.367

556.370 -0.628

-0.169 -0.628
0.504 0.840 0.080 0.812 0.276 0.832

0.692 0.7520.474 0.860 0.912 0.842

0.978 0.954 0.992 0.922

0.824 0.912

0.512 0.918 0.540 0.032

0.486 0.098 0.600 0.944

0.968 0.942
0.552 0.052

0.576 0.7700.048 0.808 0.592 0.936



Table B5.  Full Residual Stochastic Dominance Tests: Height-for-Age, Alternative Control Set.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Tables 5 and A3. 

1.190

1.364

1.190
0.000 0.396

0.000 0.750

0.000

0.880 0.0780.870 0.090
0.446 0.9780.340 0.986

0.786
0.276 1.000

0.580 0.082

0.908 0.782

0.986

0.838
0.340 0.998

0.274

264.084

0.750
0.788 0.142

0.890 0.136
0.932 0.266

-0.265 -0.111

0.004 0.760

0.706 0.102

-0.101

0.8340.572 0.428

196.651129.275

-0.111

0.572 0.842

0.000 0.810

0.908 0.744 0.748

0.000 0.748

0.976 0.204
0.600 0.2420.914 0.170

0.932 0.270
0.000 0.712

0.000 0.722

0.036 0.726

0.000 0.712

0.976 0.252

-0.265-0.101

0.446 0.992

0.397 0.038
0.000 0.710 0.036 0.726

0.397 0.038

1.756 2.251

Bootstrap Bootstrap

X SSD Y X SSD Y X SSD Y

Bootstrap Bootstrap Bootstrap Bootstrap

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered



Table B6.  Full Residual Stochastic Dominance Tests: Weight-for-Age, Alternative Control Set.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Table B5. 

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered

X FSD Y None X FSD Y

Bootstrap Bootstrap Bootstrap Bootstrap

2.102 2.762

Bootstrap Bootstrap

0.716 0.152 0.716

0.543

2.230

0.168 0.0030.543

0.168 0.003

0.720
0.994 0.266

0.000 0.428

0.000 0.7160.000 0.732

0.000

0.000 0.732
0.960 0.202

0.2480.930 0.156

0.000 0.720

0.152 0.720
0.846 0.284

0.000

-0.119

0.994 0.238
0.828 0.130

0.846 0.2800.960 0.158
0.576

484.223

0.001 -0.119

298.900

-0.286

314.350

0.798 0.466

-0.286 0.001

0.924 0.746

0.000 0.754 0.000 0.748

0.946 0.754

0.000 0.774

0.946 0.7960.798 0.812

0.550 0.068

0.054 0.246

0.800 0.066

0.342 0.998

0.756 0.076

0.924 0.778
0.204 0.986

0.342 0.986 0.204 0.9800.054 0.204



Table 1.  Unconditional Stochastic Dominance Tests: Height-for-Age.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  Bootstrap results based on 500 repetitions.  Appropriate sample weights utilized.  See text for further details. 

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered

Bootstrap Bootstrap

X FSD Y X SSD Y None

Bootstrap Bootstrap Bootstrap Bootstrap

-0.110 0.403 0.517

3.824 1.309 1.186

-0.110 0.403 0.517
0.492 0.776 0.000 0.748 0.000 0.786

0.000 0.776 0.000 0.748

0.754 0.112
0.492 0.780 0.000 0.750

0.000 0.784

0.000 0.788

0.600 0.044

0.902 1.000

0.614 0.006 0.726 0.078

0.632 0.160

0.694 0.022

-0.110 -0.108 26.260

0.902 1.000 0.630 0.062

56.001

-0.110 -0.108 26.260
0.798 0.810

707.865 204.947

0.064 0.822

0.000 0.840 0.000 0.810 0.142 0.844

0.846 0.826

0.846 0.894 0.798 0.874

0.526 0.074

0.574 0.998 0.516 0.998
0.206 0.884
0.566 0.104

0.238 0.012
0.526 0.002
0.574 0.994 0.516 0.996

0.530 0.038
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Figure 1. Unconditional Empirical Cumulative Distribution Functions: Height-for-Age z-scores.
Note: First row splits the sample using MoreThan2; second (third) row splits the sample using SameSex2 (Daughter2). In each row,

column 1 plots the CDF, column 2 plots the integrated CDF, and column 3 plots the difference in the CDFs at each percentile.

Appropriate sample weights used. See text for further details.
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Table 2.  Unconditional Stochastic Dominance Tests: Weight-for-Age.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Table 1.

0.520 0.090
0.362 0.0200.436 0.994 0.516

0.238 0.868
0.558 0.096

17.639
0.182 0.836

0.056 0.820

17.639

84.654

0.782 0.096
0.808 0.040

0.008 0.794
0.822 0.114

0.008 0.794

0.000 0.788

None
0.347

0.758

0.347

C.  IV 2 (Daughter 2 ) 
Simple Recentered

Bootstrap Bootstrap

A.  Without Instrument
Simple Recentered

X FSD Y

Bootstrap Bootstrap

-0.173

2.903

-0.173
0.700 0.788

0.000 0.790

0.700 0.792
0.800 1.000

0.750 0.012
0.800 1.000

-0.203

636.727

-0.203
0.930 0.856

0.000 0.832

0.930 0.902

0.490 0.004

0.436 0.996

B.  IV 1 (Same Sex 2 ) 
Simple Recentered

Bootstrap Bootstrap

X SSD Y
0.106

1.560

0.106
0.070 0.780

0.000 0.786

0.070 0.786
0.784 0.174

0.548 0.046
0.784 0.116

-0.230

208.046

-0.230
0.858 0.840

0.000 0.830

0.858 0.890

0.998

0.516 1.000

0.510 0.030
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Figure 2. Unconditional Empirical Cumulative Distribution Functions: Weight-for-Age z-scores.
Note: See Figure 1.
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Table 3.  Partial Residual Stochastic Dominance Tests: Height-for-Age.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  First-stage regressions include controls for:age in months, gender, gender of first two children, birthorder, days in bed, cough in the past four weeks, fever in the past four weeks,
diaarrhea in the past four weeks, parents' education, parents' height, parents' weight, parents' working status, parents' religion, whether or not household head is female, 
household decision making on children's health, household sanitary conditions, dwelling, house size, floor, wall,water sources, whether or not boil water, whether or not own a farm, 
urban/rural dummy, province dummies, whether or not parents' height are missing, whether or not father's age is missing, and whether or not house size is missing.
See Table 1 and text for further details.

0.576 0.098
0.150 0.838

0.950 0.952
0.454 0.928

0.606 0.848

0.114 0.858 0.110 0.666 0.344 0.860

0.860 0.878

1202.067

-0.584 -0.640 -0.235

6582.045 6322.549

0.164 0.992

-0.584 -0.640 -0.235

0.840 1.000 0.504 1.000

0.446 0.994

0.584 0.118

0.298 0.768

0.890 0.774

6.461

-0.107
0.844 0.774 0.826 0.790 0.592 0.762

30.484

-0.584

X FSD Y
-0.584 -0.554 -0.107

C.  IV 2 (Daughter 2 ) 
Simple Recentered

Bootstrap Bootstrap

A.  Without Instrument
Simple Recentered

X FSD Y

Bootstrap Bootstrap

0.072 0.770

0.916 0.790
0.842 1.000

0.490 0.090

0.826 0.968

0.850 0.834

0.964 0.938

0.490 0.044
0.776 0.902

B.  IV 1 (Same Sex 2 ) 
Simple Recentered

Bootstrap Bootstrap

X FSD Y

30.379

-0.554

0.104 0.616

0.930 0.800

0.032

0.536 1.000

0.494 0.266

0.970 0.938

0.580 0.938

0.618 0.958

0.490
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Figure 3. Partial Residual Empirical Cumulative Distribution Functions: Height-for-Age z-scores.
Note: Distributions obtained using equation (9) in the text.  In each rown, the controls used to obtain the plots in column 1 includes

those listed in the Appendix, Table B2; the contols used to obtain the plots in column 2 is the same as in column 1 except controls for

the number and minimum distance to schools and health facilities are included (see the Appendix, Table B3).  See text and Figure 1

for further details.



Table 4.  Partial Residual Stochastic Dominance Tests: Weight-for-Age.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Table 3.

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered

Bootstrap Bootstrap

Y FSD X Y FSD X Y FSD X

Bootstrap Bootstrap Bootstrap Bootstrap

5.711 13.531 31.908

-0.160 -0.448 -0.441

-0.160 -0.448 -0.441
0.376 0.776 0.280 0.756 0.058 0.760

0.536 0.792 0.654 0.764

0.458 0.060
0.912 0.804 0.934 0.774

0.906 0.754

0.964 0.768

0.624 1.000

0.518 0.132

0.472 0.986 0.516 0.998

0.514 0.112

0.622 1.000

1083.104 2825.991 8831.956

0.128 0.976 0.368 0.996

-0.441

-0.482 -0.667 -0.441
0.306 0.828

-0.482 -0.667

0.058 0.858

0.572 0.854 0.668 0.854 0.932 0.832

0.396 0.850

0.968 0.940 0.974 0.936

0.612 0.968

0.518 0.112 0.510 0.082
0.990 0.944
0.454 0.016

0.568 0.886
0.486 0.934
0.224 0.870 0.358 0.854

0.500 0.910
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Figure 4. Partial Residual Empirical Cumulative Distribution Functions: Weight-for-Age z-scores.
Note: See Figure 3.



Table 5.  Full Residual Stochastic Dominance Tests: Height-for-Age.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Table 3 and text for further details.

0.534 0.052
0.362 0.998

0.696 0.796
0.362 1.000

0.696 0.790

0.000 0.796 0.000 0.634 0.000 0.790

0.646 0.502

354.058

0.773 -0.222 -0.035

385.064 243.636

0.852 0.216

0.773 -0.222 -0.035

0.884 0.196

0.852 0.216

0.622 0.202

0.000 0.784

0.120 0.784

2.358

0.017
0.040 0.448 0.000 0.612 0.120 0.784

2.383

0.094

X SSD Y
0.094 0.238 0.017

None

C.  IV 2 (Daughter 2 ) 
Simple Recentered

Bootstrap Bootstrap

A.  Without Instrument
Simple Recentered

Bootstrap Bootstrap

0.000 0.750

0.040 0.750
0.884 0.534

0.726 0.096

0.114

0.180 0.494

0.570 0.028
0.180

0.646 0.850

X SSD Y

1.988

0.238

0.000 0.614

0.000 0.616
0.896

B.  IV 1 (Same Sex 2 ) 
Simple Recentered

Bootstrap Bootstrap

0.364

0.784 0.306
0.896 0.336

0.970 0.628

0.380 0.998

0.636 0.064

0.970 0.652

0.380 0.994
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Figure 5. Full Residual Empirical Cumulative Distribution Functions: Height-for-Age z-scores.
Note: Distributions obtained using equation (10) in the text. See text and Figures 1 and 3 for further details.



Table 6.  Full Residual Stochastic Dominance Tests: Weight-for-Age.

X Y X Y X Y X Y X Y X Y
Two More than Two More than Two More than Two More than Two More than Two More than
Kids Two Kids Two Kids Two Kids Two Kids Two Kids Two

Observed Ranking
d1,MAX

d2,MAX

d
Pr{d1*≤0}

Pr{d2*≤0}

Pr{d*≤0}
Pr{d1*≥d1}

Pr{d2*≥d2}
Pr{d*≥d}

s1,MAX

s2,MAX

s
Pr{s1*≤0}

Pr{s2*≤0}

Pr{s*≤0}
Pr{s1*≥s1}

Pr{s2*≥s2}
Pr{s*≥s}

Notes:  See Table 5.

A.  Without Instrument B.  IV 1 (Same Sex 2 ) C.  IV 2 (Daughter 2 ) 
Simple Recentered Simple Recentered Simple Recentered

Bootstrap Bootstrap

X SSD Y X SSD Y X SSD Y

Bootstrap Bootstrap Bootstrap Bootstrap

0.092 0.229 0.028

2.867 1.693 2.512

0.092 0.229 0.028
0.036 0.480 0.002 0.738 0.300 0.762

0.000 0.746 0.000 0.740

0.608 0.238
0.036 0.748 0.002 0.742

0.000 0.764

0.300 0.764

0.570 0.200

0.906 0.504

0.652 0.110 0.898 0.172

0.880 0.214

0.608 0.230

-0.233 -0.169 -0.038

0.906 0.204 0.880 0.174

466.253

-0.233 -0.169 -0.038
0.986 0.770

391.432 305.363

0.864 0.794

0.000 0.786 0.000 0.798 0.000 0.812

0.956 0.500

0.956 0.808 0.986 0.832

0.518 0.030

0.374 0.996 0.292 0.996
0.864 0.844
0.184 0.986

0.184 0.946
0.584 0.026
0.374 0.990 0.292 0.958

0.576 0.046
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Figure 6. Full Residual Empirical Cumulative Distribution Functions: Weight-for-Age z-scores.
Note: See Figure 5.




