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1 Introduction

Empirical researchers in economics, finance, management, and other disciplines are often interested in

the causal effect of a binary treatment on outcomes. In some cases, randomization is used to ensure

comparability across the treatment and control groups. However, researchers must rely on observational

data when randomization is not feasible. With observational data, concern over the non-random selection

of subjects into the treatment group becomes well-founded. Addressing the possibility of non-random

selection requires much of the data at hand. Moreover, even with randomization, demands on the data

may be non-trivial since randomization only balances covariates across the treatment and control groups

in expectation.

In this paper, we consider the case where adjustment for observed covariates is performed to recover

an unbiased estimate of the effect of a treatment. Thus, we are restricting ourselves to the case of selection

on observed variables. The econometric and statistics literature on the estimation of causal effects in the

case of selection on observed variables has grown tremendously of late.1 This has led to the proliferation

of statistical methods designed to estimate the causal effect(s) of the treatment, including parametric

regression methods, semi- or non-parametric methods based on the propensity score, and combinations

thereof.

Despite the growing number of estimation methods, there are only a few that take into account mea-

surement errors in the data. Here, we present a new semi-parametric estimator that partially fills this gap.

In particular, we focus on the case when the propensity score is of an unknown functional form and some

covariates are subject to classical measurement error. There are two issues to be dealt with to estimate

the treatment effect in such a situation: first, we need to estimate the functional form of the propensity

score; second, we need to estimate the moment of a known (or estimated) function of mismeasured co-

variates. The first issue is solved by using deconvolution kernel regression. For the second issue, as the

sample analogue is no longer feasible due to the unobservability of the error-free covariates, we consider

the integration weighted by deconvolution kernel density estimator.

We illustrate our estimator both via simulation and by revisiting the randomized control trial (RCT)

on financial literacy examined in Drexler et al. (2014). In the experiment, micro-entrepreneurs taking out

a loan from ADOPEM, a microfinance institution in the Dominican Republic, are randomly assigned to

one of three treatment arms to assess the causal effect of financial literacy programs on a firm’s financial

practices, objective reporting quality, and business performance. The first treatment provided subjects

with standard accounting training. The second treatment provided rule-of-thumb training that covered

basic financial heuristics. The final group received neither training and serves as the control group. The

1See Imbens and Wooldridge (2009) and Abadie and Cattaneo (2018) for excellent surveys.
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authors find significant beneficial effects of the rule-of-thumb training, but not the standard accounting

training.

We revisit this study for three reasons. First, proper evaluation of financial literacy interventions is

critical. As documented in Lusardi and Mitchell (2014), financial literacy in the US and elsewhere seems

woefully inadequate for individuals and small business owners to navigate complex financial matters.

McKenzie and Woodruff (2013, p. 48-49) offer the following vivid description:

“Walk into a typical micro or small business in a developing country and spend a few minutes

talking with the owner, and it often becomes clear that owners are not implementing many

of the business practices that are standard in most small businesses in developed countries.

Formal records are not kept, and household and business finances are combined. Market-

ing efforts are sporadic and rudimentary. Some inventory sits on shelves for years at a time,

whereas more popular items are frequently out of stock. Few owners have financial targets or

goals that they regularly monitor and act to achieve.”

As evidenced in this quote, the lack of financial literacy among micro-entrepreneurs has real conse-

quences. Lusardi and Mitchell (2014) discuss the wider impacts of a lack of financial literacy, such as

lower participation in financial markets, poor investment decisions, susceptibility to financial scams, in-

adequate retirement planning, increased credit card and mortgage debt, etc. See Morgan and Trinh (2019)

for a recent example.

While the impacts are well-documented, knowledge of the efficacy of various programs aiming to

teach financial literacy is inadequate. Specifically, the causal effect of specific types of financial literacy

training interventions is relatively unexplored. Existing research typically lumps all financial literacy

programs together, potentially masking insights into what works and what does not. For example, Fer-

nandes et al. (2015) perform a meta-analysis of 201 studies assessing the impact of financial literacy and

education programs on financial behaviors, finding that interventions explain only 0.1% of the variance

in financial behaviors. By comparing two different training programs, Drexler et al. (2014) represent an

important contribution to the literature.

Second, better understanding the determinants of successful microenterprises is critical in lesser de-

veloped countries. Berge et al. (2015, p. 707) state: “Microenterprises are an important source of em-

ployment, and developing such enterprises is a key policy concern in most countries, and in particular

in developing countries where they employ more than half of the labor force.” However, the viability of

microenterprises has been found to be heterogenous, as the authors further note that “a growing literature

shows that success cannot be taken for granted” (p. 707). Recent research has focused on sources of this

heterogeneity, finding that it is not explained fully by variation in capital (Bruhn et al. 2018). The study
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by Drexler et al. (2014) addresses this issue by exploring the impact of different types of financial literacy

training on firm success.

Finally, our proposed estimator is well-suited to the application. To start, despite training being ran-

domly assigned, the authors control (via regression) for several covariates to increase the precision of the

treatment effect estimates. Moreover, one covariate is continuous and potentially suffers from classical

measurement error. This covariate reflects the size of the loan received by the entrepreneur. While this

variable is unlikely to be mismeasured as it is obtained from bank records, arguably the ‘true’ covariate

of interest is a measure of capital investment in the firm by the entrepreneur. This could be below the

official size of the loan due to some funds being diverted to non-business use, or above the official size of

the loan due to other funds being used to supplement the loan. As Drexler et al. (2014, p. 2) note, “for

microenterprises the boundary between business and personal financial decisions is often blurred.”

Applying our proposed estmator, we find the results in Drexler et al. (2014) to be generally robust to

‘modest’ amounts of measurement error. However, for a few outcomes, the magnitude of the estimated

treatment effect changes. With greater amounts of measurement error, the results are not surprisingly less

robust. Typically in such cases we find larger point estimates once measurement error is addressed.

The remainder of the paper is organized as follow. Section 2 provides a brief overview of the literature

on measurement error in covariates. Section 3 provides an overview of the potential outcomes framework,

discusses identification with and without measurement error in covariates, and presents our proposed

estimator. Section 4 studies the small sample properties of the proposed estimators by simulation. Section

5 contains our application to assessment of two financial literacy interventions. Section 6 concludes.

2 Measurement Error in Covariates

A small literature has considered measurement error in an observed covariate when estimating the causal

effect of a treatment in the case of selection on observed variables. In a regression context with classical

measurement error, it is well known that the Ordinary Least Squares (OLS) estimate of the coefficient on

the mismeasured regressor suffers from attenuation bias (see, e.g., Frisch 1934; Koopmans 1937; Reiersøl

1950). However, bias will also impact the estimated treatment effect if treatment assignment is corre-

lated with the true value of the mismeasured covariate (Bound et al. 2001). The sign of this covariance

determines the sign of the bias. If the measurement error is correlated with treatment assignment (i.e.,

it is nonclassical), then the direction of the bias depends on whether the partial correlation between the

measurement error and treatment assignment is positive or negative (Bound et al. 2001). Finally, if mul-

tiple covariates suffer from measurement error, then one is typically unable to sign the bias even under

classical measurement error (Bound et al. 2001).
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With classical measurement error, a consistent estimate of the treatment effect can be recovered using

Instrumental Variable (IV) estimation, where the mismeasured covariate(s) are instrumented for using

valid exclusion restrictions. However, this solution places further demands on the data as valid instru-

ments must be available. As an aside, it is also important to realize that the estimated treatment effect will

still be inconsistent if treatment assignment is correlated with the measurement error (Bound et al. 2001).

Beyond the regression context, several recent papers consider the effect of measurement error in one

or more covariates when relying on semi- or non-parametric estimators of the treatment effect. Battistin

and Chesher (2014), extending early work in Cochran and Rubin (1973), focus on the bias of treatment

effect parameters estimated using semiparametric (propensity score) methods. The bias, which may be

positive or negative, is a function of the measurement error variance. The authors consider bias-corrected

estimators where the bias is estimated under different assumptions concerning the reliability of the data.

McCaffrey et al. (2013) develops a consistent inverse propensity score weighted estimator for the case

when covariates are mismeasured. In particular, the authors consider a weight function of mismeasured

covariates whose conditional expectation given the correctly measured covariates equals the error-free

inverse propensity score. Their estimator is then constructed based on approximating the weight function

by projecting the inverse of the estimated propensity score onto a set of basis functions. To estimate

the propensity score with mismeasured covariates, knowledge of the measurement error distribution

is generally needed. It is worth noting that the measurement error considered in this paper could be

non-classical, as only conditional independence between the measurement error and the outcome and

the treatment given the correctly measured covariates is required. As a cost to this extra flexibility, the

authors only establish consistency; further characterization of the asymptotic properties are left as a gap

to be filled.

Jakubowski (2015) assesses the performance of propensity score matching when an unobserved co-

variate is proxied by several variables. The author considers two estimation methods. The first is a

propensity score matching estimator where the propensity score model includes the proxy variables. The

second is also a propensity score matching model except now the propensity score model includes an

estimate of the unobserved covariate obtained via a factor analysis approach.

Webb-Vargas et al. (2017) examines the performance of inverse propensity score weighting with a

mismeasured covariate. The authors then consider an inverse propensity score weighting estimator that

replaces the mismeasured covariate with multiple imputations. The imputations make use of an auxiliary

data source that contains both the true covariate and the mismeasured covariate. Each imputation leads

to a unique propensity score model and hence a distinct estimate of the treatment effect. These multiple

estimates are then combined into a final estimate.

Rudolph and Stuart (2018) assess the performance of three approaches to deal with measurement
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error in covariates when applying propensity score estimators. The first approach is propensity score

calibration which, similar to Webb-Vargas et al. (2017), relies on an auxialiary data source that contains

both the true covariate and the mismeasured covariate. The second approach is a bias-corrected technique

based on the fomulas derived in VanderWeele and Arah (2011). As these bias formulas depend on various

unknown sensitivity parameters, this technique relies on either external data to make educated guesses

concerning the values of these parameters or sensitivity analysis using a grid of plausible values. The final

approach is similar and relies on the sensitivity (to unobserved confounders) approach of Rosenbaum

(2010) for matched pairs.

Hong et al. (2019) perform an extensive simulation exercise to explore the impact of multiple mismea-

sured covariates with and without correlated measurement errors. The authors find that correlation in

the measurement errors can exacerbate the bias and that including auxiliary variables that are correlated

with the true values of the mismeasured covariates may help mitigate the bias.

In sum, it is now well known that measurement error in covariates that belong in the propensity score

model introduces bias in the estimated treatment effect. While a few solutions have been proposed, these

solutions have not completely solved the problem. Some solutions rely on auxiliary data that contain both

the true and mismeasured covariates. Other solutions are based upon bias-corrected estimates requiring

the specification of parameter values whose true values are typically unknown. Finally, some solutions

are based on trying to reduce the bias through the use of multiple proxies or assessing how severe the

measurement error would have to be to explain the treatment effect ignoring measurement error.

Compared to most of these existing works, our estimator has the advantage of not requiring a specific

functional form of the propensity score so that it can avoid the bias caused by potential model misspeci-

fication. McCaffrey et al. (2013) is an exception as it also treat the propensity as a nonparametric object.

However, instead of the consistency established in McCaffrey et al. (2013), our estimator allows us to

further characterize the differences in the convergence rates when the measurement errors are of different

smoothness.

For the technical aspects, this paper contributes to the vast literature on estimating the non-/semi-

parametric measurement error models using deconvolution. See books by Meister (2009) and Horowitz

(2009) and surveys by Chen, Hong and Nekipelov (2011) and Schennach (2016) for reviews. This liter-

ature started with the density estimation; See Carroll and Hall (1988), Stefanski and Carroll (1990), Fan

(1991a,b), Bissantz, Dümbgen, Holzmann and Munk (2007), van Es and Gugushvili (2008), Lounici and

Nickl (2011) among others. The deconvolution approach used to estimate the density later extend to the

estimation of regression function; See Fan and Truong (1993), Fan and Masry (1992), Delaigle and Meis-

ter (2007), Delaigle, Fan and Carroll (2009) and Delaigle, Hall and Jamshidi (2015). Like works in other

semi-parametric setups (Fan, 1995; Dong, Otsu and Taylor, 2020b), our estimator is constructed using the
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deconvolution kernel estimators of both the density and the regression function as the building blocks.

3 Empirics

3.1 Potential Outcomes Framework

Our analysis is couched within the potential outcomes framework (see, e.g., Neyman 1923; Fisher 1935;

Roy 1951; Rubin 1974). We consider a random sample of N individuals from a large population, where

individuals are indexed by j = 1, ..., n. Define Yj(T) to be the potential outcome of individual j under

treatment T, T ∈ T .2 In this paper, we limit ourselves to binary treatments: T = {0, 1}. The causal effect

of the treatment for a given individual is defined as the individual’s potential outcome under treatment

(T = 1) relative to the individual’s potential outcome under control (T = 0). Formally,

τj = Yj(1)−Yj(0). (1)

In the evaluation literature, several population parameters are of potential interest. Here, attention is

given to the average treatment effect (ATE)

τ = E[τj] = E[Yj(1)−Yj(0)]

and the average treatment effect for the treated (ATT)

τtreat = E[τj|T = 1] = E[Yj(1)−Yj(0)|T = 1].

The ATE is the expected treatment effect of an observation chosen at random from the population, whereas

the ATT is the expected treatment effect of an observation chosen at random from the treatment group.

Each observation is characterized by the quadruple {Yj, Tj, Xj, Zj}, where Yj is the observed outcome,

Tj is a binary indicator of the treatment received, Xj is a scalar covariate, and Zj is a d-dimensional vector

of covariates. The covariates included in Xj and Zj must be pre-determined (i.e., they are not affected by

Tj) and must not perfectly predict treatment assignment. The observed outcomes is

Yj = TjYj(1) + (1− Tj)Yj(0) (2)

which makes clear that only one potential outcome is observed for any individual. Absent randomization,

τ and τtreat are not identified in general due to the selection problem, that is the distribution of (Y(0), Y(1))
2We assume that the Stable Unit Treatment Value Assumption (SUTVA), where potential outcomes of individuals do not

depend on the treatment assignment of others, to hold (Neyman 1923; Rubin 1986).
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may depend on T. Even with randomization, the efficiency of estimates can be improved by incorporating

the covariates.

3.2 Strong Ignorability

To overcome the selection problem, or to improve the efficiency of estimates obtained under randomiza-

tion, a set of fully observed covariates are commonly assumed, conditional on which (Y(0), Y(1)) and T

are independent. This is referred to as the conditional independence or unconfoundedness assumption (Rubin

1974; Heckman and Robb 1985). Formally, this assumption is expressed as

Assumption 1. (Y(0), Y(1)) ⊥ T|(X, Z).

In addition to Assumption 1, the following overlap or common support assumption concerning the joint

distribution of treatment assignment and covariates is also needed. Let pX,Z(x, z) = P(T = 1|X = z, Z =

z) denote the propensity score, and X and Z denote supports of X and Z respectively.

Assumption 2. 0 < pX,Z(x, z) < 1 for all (x, z) ∈ X ×Z .

Assumptions 1 and 2 are jointly referred to as strong ignorability in Rosenbaum and Rubin (1983) and lead

to the following well known result

τ = E
[

(T − pX,Z(X, Z))Y
pX,Z(X, Z)(1− pX,Z(X, Z))

]
(3)

τtreat = E
[
(T − pX,Z(X, Z))Y
p(1− pX,Z(X, Z))

]
, (4)

where p = P(T = 1) is the probability of getting treated; See Proposition 18.3 of Wooldridge (2010). Thus,

strong ignorability is sufficient to identify the estimands, τ and τtreat, when all variables are accurately

measured.

3.3 Strong Ignorability with Measurement Error

Consider the case where Assumptions 1 and 2 continue to hold, but the quadruple {Yj, Tj, Wj, Zj} is ob-

served by the researcher instead of {Yj, Tj, Xj, Zj}. Here, the observed scalar, Wj, is assumed to be a noisy

measure of Xj, generated by

Wj = Xj + εj,

where εj is measurement error. Let fV denote the density of a random variable V and f ft(t) =
∫

eitx f (x)dx

denote the Fourier transform of a function f with i =
√
−1. To identify τ and τtreat in the presence of

contaminated data, we impose the following assumption in addition to strong ignorability.
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Assumption 3. ε ⊥ (Y, T, X, Z), fε is known, and f ft
ε vanishes nowhere.

Assumption 3 requires the measurement error to be classical. Although this is somewhat restrictive, it

is worth noting that this setup is consistent with multiplicative measurement error of the form W = Xε,

as this can be transformed to an additive structure by taking the natural logarithm. In fact, as argued in

Schennach (2019), we do not need full independence; only f ft
W(t) = f ft

X(t) f ft
ε (t) for all t ∈ R is necessary,

which is as equally strong as a conditional mean restriction. The assumption of a known error distribu-

tion is unlikely to hold in practice, but is imposed here for simplicity. We discuss the relaxation of this

assumption when auxiliary information is available, such as the repeated measurements of X, in Section

3.5.

The identification result in the presence of contaminated data is given in the following theorem.

Theorem 1. Under Assumptions 1-3, τ and τtreat are identified from {Y, T, W, Z}.

The intuition behind Theorem 1 is straightforward. Based on (3) and (4), to identify τ and τtreat, it is

sufficient to identify fY,X,Z|T, which follows by implementing the convolution theorem to fY,W,Z|T under

Assumption 3.

Theorem 1 in McCaffrey et al. (2013) provides results that be used to achieve the point identification of

τ and τtreat under similar assumptions. In particular, using their Theorem 1, τ and τtreat can be identified

by (3) and (4) if the inverse propensity score is replaced by a non-stochastic function A of W and Z whose

conditional expectation given X and Z equals 1/pX,Z, i.e. E[A(W, Z)|X, Z] = 1/pX,Z(X, Z), and A is

needed to finally pin down τ and τtreat. McCaffrey et al. (2013), however, do not provide further details

on A except in very special cases.

Under Assumptions 1 - 3, where Assumption 3 is slightly stronger than Assumption 1 in McCaffrey

et al. (2013), we can derive a general explicit form of their function A. For example, for E[Y(1)], which is

needed to construct τ, the function A is given by

A(w, z) =
p
∫

e−itw { fW,Z|T=1(·,z)}ft(t)
| f ft

ε (t)|2
dt

2π fW,Z(w, z)
, (5)

where { fW,Z|T=1(·, z)}ft(t) =
∫

eitw fW,Z|T=1(w, z)dw. While it is not easy to give an intuitive interpreta-

tion of (5), using the law of iterated expectation, the result shown in Appendix A.2 implies that (5) is

the equivalent quantity of the inverse propensity score in the contaminated case. As can be seen, the

functional form of A depends on fW,Z|T and fε. The former, fW,Z|T, is identified as {T, W, Z} are directly

observed, but extra knowledge on the latter, fε, is needed to identify A, which echos the known error

distribution part of Assumption 3.
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In fact, the functional form of A not only matters to the identification of τ and τtreat, but also matters

to the convergence rates of estimators of τ and τtreat. In particular, as will be seen in Section 3.4, varying

the smoothness of fε (implying f ft
ε decays to zero at different rates as t → ∞) alters the convergence rate.

Intuitively, as f ft
ε appears in the denominator of A, even if the same estimator of fW,Z|T is used to construct

the estimator of A and then the estimators of τ and τtreat, due to the integration, the resulting estimators

of τ and τtreat should converge at different speeds if f ft
ε decays to zero at different rates.

3.4 Estimation

If we directly observe X, τ and τtreat can be estimated by

τ̌ =
1
n

n

∑
j=1

(Tj − p̌X,Z(Xj, Zj))Yj

(1− p̌X,Z(Xj, Zj)) p̌X,Z(Xj, Zj)

τ̌treat =
1
n

n

∑
j=1

(Tj − p̌X,Z(Xj, Zj))Yj

p̂ p̌X,Z(Xj, Zj)
,

where p̂ = 1
n ∑n

j=1 Tj and p̌X,Z is a nonparametric estimator of the propensity score, pX,Z. These are known

as the inverse propensity score weighting (IPW) estimators; see Horvitz and Thompson (1952). However,

this estimator is no longer feasible when X is unobserved due to measurement error. To overcome this,

note that we can alternatively express τ and τtreat as

τ =
∫∫∫ { p fY,X,Z|T=1(y, x, z)

pX,Z(x, z)
−

(1− p) fY,X,Z|T=0(y, x, z)
1− pX,Z(x, z)

}
ydydxdz, (6)

τtreat =
∫∫∫ {

fY,X,Z|T=1(y, x, z)−
(1− p)pX,Z(x, z) fY,X,Z|T=0(y, x, z)

p(1− pX,Z(x, z))

}
ydydxdz, (7)

Derivation of (6) and (7) are discussed in Appendix A.1. To keep the notation simple, we will focus on

the case when both X and Z are scalar for the rest of this section. By applying the deconvolution method

with fε known and given the i.i.d. sample {Yj, Tj, Wj, Zj}n
j=1 of (Y, T, W, Z), the conditional densities

fY,X,Z|T=1(y, x, z) and fY,X,Z|T=0(y, x, z) can be estimated by

f̃Y,X,Z|T=1(x, y, z) =
b−3

n ∑n
j=1 TjK

(
y−Yj

bn

)
K
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

j=1 Tj
, (8)

f̃Y,X,Z|T=0(x, y, z) =
b−3

n ∑n
j=1(1− Tj)K

(
y−Yj

bn

)
K
(

x−Wj
bn

)
K
(

z−Zj
bn

)
n−∑n

j=1 Tj
, (9)
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and the propensity score pX,Z(x, z) can be estimated by

p̃X,Z(x, z) =
∑n

j=1 TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

j=1 K
(

x−Wj
bn

)
K
(

z−Zj
bn

) , (10)

where bn is a bandwidth, K is a (ordinary) kernel function, and K is a deconvolution kernel function

defined as

K(x) =
1

2π

∫
e−itx Kft(t)

f ft
ε (t/bn)

dt.

Plugging (8), (9), and (10) into (6) and (7), we obtain estimators of τ and τtreat as follow.

τ̃ =
∫
X

∫
Z

{
q̃1,1(x, z)
q̃0,1(x, z)

− q̃1,0(x, z)
q̃0,0(x, z)

}
q̃(x, z)dxdz, (11)

τ̃treat =
∫
X

∫
Z

{
q̃1,1(x, z)− q̃1,0(x, z)q̃0,1(x, z)

q̃0,0(x, z)

}
1
p̂

dxdz (12)

where X and Z separately denote the support of X and Z, and

q̃(x, z) =
1

nb2
n

n

∑
j=1

K

(
x−Wj

bn

)
K
(

z− Zj

bn

)
,

q̃k,s(x, z) =
1

nb2
n

n

∑
j=1

Yk
j Ts

j (1− Tj)
1−sK

(
x−Wj

bn

)
K
(

z− Zj

bn

)
for k, s = 0, 1.

Derivation of (11) and (12) are left to Appendix A.3.

Remark 1 (Case of vector X and Z). The proposed method can be easily generalized to case when X and Z

are vector even though it is constructed based on the case when both X and Z are scalar. In particular, let X =

(X1, . . . , Xdx) and Z = (Z1, . . . , Zdz) be dx- and dz-dimensional vectors, respectively, and W = (W1, . . . , Wdx) a

dx-dimensional vector of noisy measures of X generated by Wd = Xd + εd for d = 1, . . . , dx. Following a simiar

route as when X and Z are both scalar, we can estimate τ and τtreat by

τ̃′ =
∫
X1

· · ·
∫
Xdx

∫
Z1

· · ·
∫
Zdz

{
q̃′1,1(x, z)
q̃′0,1(x, z)

−
q̃′1,0(x, z)
q̃′0,0(x, z)

}
q̃′(x, z)dxdz,

τ̃′treat =
∫
X1

· · ·
∫
Xdx

∫
Z1

· · ·
∫
Zdz

{
q̃′1,1(x, z)−

q̃′1,0(x, z)q̃′0,1(x, z)
q̃′0,0(x, z)

}
1
p̂

dxdz,

where Xd1 and Zd2 separately denote the support of Xd1 and Zd2 for d1 = 1, . . . , dx and d2 = 1, . . . , dz, x =
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(x1, . . . , xdx), z = (z1, . . . , zdz), and

q̃′(x, z) =
1

nbdx+dz
n

n

∑
j=1

dx

∏
d=1

Kd

(
xd −Wd,j

bn

) dz

∏
j=1

K
(

zd − Zd,j

bn

)
,

q̃′k,s(x, z) =
1

nbdx+dz
n

n

∑
j=1

Yk
j Ts

j (1− Tj)
1−s

dx

∏
d=1

Kd

(
xd −Wd,j

bn

) dz

∏
j=1

K
(

zd − Zd,j

bn

)
for k, s = 0, 1,

with

Kd(x) =
1

2π

∫
e−itx Kft(t)

f ft
εd
(t/bn)

dt for d = 1, . . . , dx.

We conjecture that analogous results to our main theorems can be established for the multivariate case.

To derive the convergence rates of τ̃ and τ̃treat, we need following conditions.

Assumption 4.

(i) {Yj, Tj, Wj, Zj}n
j=1 is an i.i.d. sample of (Y, T, W, Z). fX,Z and E[Y(s)|X, Z] are bounded away from zero, and

fX,Z and E[Y2(s)|X, Z] are bounded for s = 0, 1 over compact support X ×Z .

(ii) fX,Z, pX,Z, and E[Y(s)|X, Z] for s = 0, 1 are γ-times continuously differentiable with bounded and integrable

derivatives for some positive integer γ.

(iii) K is differentiable to order γ and satisfies

∫
K(u)du = 1,

∫
up+1K(u)du 6= 0,

∫
ulK(u)du = 0 for l = 1, 2, . . . , γ.

Also, Kft is compactly supported on [−1, 1], symmetric around zero, and bounded.

(iv) bn → 0 and nbn

(
inf|t|≤b−1

n
| f ft

ε (t)|
)2
→ ∞ as n→ ∞.

Assumption 4 (i) requires the random sampling and the regularity of densities and conditional mo-

ments. Assumption 4 (ii) imposes smoothness restrictions on the densities and conditional moments,

which are needed to control the magnitude of bias in the estimation together with the properties of ker-

nel function K as imposed in Assumption 4 (iii). In addition to the standard properties of a high-order

kernel function, Assumption 4 (iii) also requires Kft to be compactly supported, which is commonly used

in deconvolution problems to truncate the ill-behaved tails of the integrand for regularization purposes.

Meister (2009) discusses how kernels of any order can be constructed quite simply. Assumption 4 (iv)

imposes mild bandwidth restrictions. In particular, it simply requires that the bandwidth must decay to

zero as the sample size grows, but should not decay too fast. The second part of Assumption 4 (iv) is

needed so that the higher order components of the estimation error are asymptotically negligible.
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Theorem 2. Under Assumptions 1 - 4, it holds

|τ̃ − τ| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 ,

|τ̃treat − τtreat| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 .

Theorem 2 presents the convergence rates of τ̃ and τ̃treat. The second term bγ
n in the convergence rate

characterizes the magnitude of the estimation bias, which is identical to the error-free case. The first term

characterizes the magnitude of the estimation variance. Compared to the error-free case, the estimation

variance of τ̃ and τ̃treat decays slower due to the extra term b−1/2
n

(
inf|t|≤b−1

n
| f ft

ε (t)|
)−1

. In particular, the

smoother is the error distribution, the larger will be the estimation variance and, hence, the slower will

be the convergence rate.

As is typical in the nonparametric measurement literature, to further specify the convergence rates

of τ̃ and τ̃treat, we consider two separate cases characterized by different smoothness of the measure-

ment error: the ordinary smooth case and the supersmooth case. For the ordinary smooth case, the error

characteristic function decays at a polynomial rate. In particular, we impose the following condition.

Assumption 5. There exist positive constants α and cos
0 ≤ cos

1 such that

cos
0 (1 + |t|)−α ≤ | f ft

ε (t)| ≤ cos
1 (1 + |t|)−α for all t ∈ R.

If fε satisfies Assumption 5, we say that it is ordinary smooth of order α. Popular examples of ordinary

smooth densities include the Laplace and gamma density. The convergence rates of τ̃ and τ̃treat in the

presence of ordinary smooth error of order α are specified as follow.

Corollary 1. Under Assumptions 1 - 4, if Assumption 5 holds true, we have

|τ̃ − τ| = Op

(
n−1/2b−(3/2+α)

n + bγ
n

)
,

|τ̃treat − τtreat| = Op

(
n−1/2b−(3/2+α)

n + bγ
n

)
.

Corollary 1 shows that τ̃ and τ̃treat converge in a polynomial rate n−r for some constant r > 0. The value

of r depends on the choice of the bandwidth bn, which will be discussed in Section 4.

For the supersmooth case, the error characteristic function decays at an exponential rate. In particular,

we impose the following condition.

12



Assumption 6. There exist positive constants β, β0, and css
0 ≤ css

1 such that

css
0 e−β0|t|β ≤ | f ft

ε (t)| ≤ css
1 e−β0|t|β for all t ∈ R.

If fε satisfies Assumption 6, we say that it is supersmooth of order β. Popular examples of super-

smooth densities include the Cauchy and Gaussian density. The convergence rates of τ̃ and τ̃treat in the

presence of supersmooth error of order β are specified as follow.

Corollary 2. Under Assumptions 1 - 4, if Assumption 6 holds true, we have

|τ̃ − τ| = Op

(
n−1/2b−3/2

n eβ0b−β
n + bγ

n

)
,

|τ̃treat − τtreat| = Op

(
n−1/2b−3/2

n eβ0b−β
n + bγ

n

)
.

Corollary 2 shows that τ̃ and τ̃treat can only converge at a logarithm rate, which is much slower than the

polynomial rate that has been seen in the ordinary smooth case. In particular, a normal error would make

the estimator much more data-demanding than the case with a Laplace error. Again, the specific rate will

depends on the choice of the bandwidth bn, which will be discussed in Section 4.

3.5 Case of Unknown Measurement Error Distribution

Assuming the measurement error distribution to be fully known is usually unrealistic in practice. Auxil-

iary information, such as repeated measurements of X, can be used to relax the assumption of a known

error distribution imposed in Assumption 3.

Suppose we have two independent noisy measures of X, W and Wr, determined as follows

Wj = Xj + εj

Wr
j = Xj + εr

j ,

for j = 1, . . . , n. To identify the distribution of ε, we impose the following assumption.

Assumption 7. (ε, εr) are mutually independent and independent of (X, Y, Z, T), the distributions of ε and εr are

identical, and fε is symmetric around zero.

The error characteristic function, f ft
ε , can be estimated by

f̂ ft
ε (t) =

∣∣∣∣∣ 1n n

∑
j=1

cos{t(Wj −Wr
j )}
∣∣∣∣∣
1/2
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under Assumption 7 (Delaigle et al. 2008)3.

When the measurement error distribution is unknown, we can estimate τ and τtreat by plugging in this

estimator, yielding

τ̂ =
∫
X

∫
Z

{
q̂1,1(x, z)
q̂0,1(x, z)

− q̂1,0(x, z)
q̂0,0(x, z)

}
q̂(x, z)dxdz, (13)

τ̂treat =
∫
X

∫
Z

{
q̂1,1(x, z)− q̂1,0(x, z)q̂0,1(x, z)

q̂0,0(x, z)

}
1
p̂

dxdz, (14)

where

q̂(x, z) =
1

nb2
n

n

∑
j=1

K̂

(
x−Wj

bn

)
K
(

z− Zj

bn

)
,

q̂k,s(x, z) =
1

nb2
n

n

∑
j=1

Yk
j Ts

j (1− Tj)
1−sK̂

(
x−Wj

bn

)
K
(

z− Zj

bn

)
for k, s = 0, 1,

and the deconvolution kernel function based on estimated error characteristic function defined by

K̂(x) =
1

2π

∫
e−itx Kft(t)

f̂ ft
ε (t/bn)

dt.

3.6 Inference

The proposed estimators, both in the case where the error distribution is known and the case where it

is not, are constructed based on deconvolution methods. Unfortunately, deconvolution-based inference

is known to be extremely challenging. Most of the existing work on the deconvolution-based inference

focuses on nonparametric objects, such as the density and regression function. In particular, Bissantz et

al. (2007) develops uniform confidence bands for the density of a mismeasured variable when the error

distribution is known. Lounici and Nickl (2011) derive upper bounds for the sup-norm risk of a wavelet

deconvolution estimator of the density of a mismeasured variable when the error distribution is unknown

but repeated measurements are available. The authors construct uniform confidence bands for the density

using these bounds. The resulting confidence bands, however, could be conservative as the upper bound

of the coverage probability is derived using the concentration inequalities. Kato and Sasaki (2018, 2019)

establish uniform confidence bands with asymptotic validity for the density of a mismeasured variable

and the regression function of a mismeasured covariate, respectively, in the case when the error distribu-

tion is unknown but repeated measurements are available. Inference concerning a function of densities

3As ε and εr are independent and identically distributed under Assumption 7, we have E
[
eit(W−Wr)

]
= E

[
eit(ε−εr)

]
=

| f ft
ε (t)|2. As fε is symmetric around zero under Assumption 7, f ft

ε (t) > 0, which implies f ft
ε (t) =

∣∣∣E [eit(W−Wr)
]∣∣∣1/2

=

|E [cos{t(W −Wr)}]|1/2. Thus, f̂ ft
ε (t) is obtained by plugging in the sample analogue of E [cos{t(W −Wr)}].
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and regression functions under the deconvolution problem is remains an open question in the literature.

We leave for future work the examination of bootstrap methods for the construction of confidence in-

tervals of our proposed estimators. In particular, a non-parametric bootstrap as in Bissantz et al. (2007)

could be considered for the case when the error distribution is known, and a wild bootstrap as in Kato

and Sasaki (2019) could be considered for the case when the error distribution is unknown but repeated

measurements are available.

4 Simulation

In this section, we evaluate the finite sample performance of the proposed estimators using Monte Carlo

simulation. In particular, we focus on the case with a single covariate for which we can only observe its

noisy measurement, and the following data generating process is considered

Y(T) = g(T, X) + U,

where covariate X is drawn from U[0.5, 1.5] and is independent of U, the error term U is drawn from

N(0, 1) and is independent of (T, X), the treatment is assigned according to P(T = 1|X) = exp(0.5− X),

and three specifications of g are considered

DGP1 :g(t, x) = t + x,

DGP2 :g(t, x) = t + x + x2 − x3,

DGP3 :g(t, x) = t + x− sin(x).

While X is assumed unobserved, we suppose W = X + ε and Wr = X + εr are observed, where (ε, εr)

is mutually independent and independent of (T, X, U). For the distributions of ε and εr, we consider

two cases. First, as an example of the case of ordinary smooth errors, we consider the case when (ε, εr)

have a zero mean Laplace distribution with standard deviation 1/3. Second, as an example of the case

of supersmooth errors, we consider the case when (ε, εr) have a normal distribution with zero mean and

standard deviation of 1/3.

Throughout the simulation study, we use the kernel function whose Fourier transform is

Kft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1.
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This is the infinite-order flat-top kernel proposed by McMurry and Politis (2004), whose Fourier transform

is compactly supported and can be used for the regularization purpose in the deconvolution estimation.

A trimming term is used in the denominators q̂0,0 and q̂0,1 to ensure the stability. Specifically, all

values of the denominators below 0.01 are set to 0.01. Two sample sizes are considered, n=250 and 500,

and all results are based on 500 Monte Carlo replications. For the choice of the bandwidth, to reduce

the computation cost, we apply Delaigle and Gijbels (2004) to the first experiment, and use it for all

subsequent simulations. To increase the robustness, we use 2 times the optimal bandwidth suggested by

Delaigle and Gijbels (2004) as the deconvolution based estimator is more sensitive to smaller bandwidth;

see Dong et al. (2020a).

Table 1: DGP1

Known Error Distribution

Estimator τ̃ τ̃treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias 0.056 -0.217 -0.316 -0.292 0.131 -0.226 -0.322 -0.297

SD 0.371 0.104 0.126 0.096 0.559 0.109 0.128 0.098

RMSE 0.375 0.241 0.340 0.307 0.575 0.251 0.346 0.313

Unknown Error Distribution

Estimator τ̂ τ̂treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias 0.094 -0.216 -0.315 -0.292 0.185 -0.224 -0.321 -0.297

SD 0.451 0.103 0.127 0.096 0.690 0.108 0.129 0.098

RMSE 0.461 0.239 0.340 0.307 0.714 0.249 0.346 0.313
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Table 2: DGP2

Known Error Distribution

Estimator τ̃ τ̃treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias -0.082 -0.121 -0.170 -0.152 -0.086 -0.138 -0.178 -0.160

SD 0.273 0.103 0.125 0.096 0.400 0.107 0.127 0.098

RMSE 0.285 0.159 0.211 0.180 0.409 0.175 0.219 0.188

Unknown Error Distribution

Estimator τ̂ τ̂treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias -0.077 -0.120 -0.169 -0.152 -0.064 -0.137 -0.177 -0.160

SD 0.333 0.103 0.126 0.095 0.523 0.108 0.128 0.098

RMSE 0.342 0.158 0.211 0.180 0.527 0.174 0.219 0.188

Table 3: DGP3

Known Error Distribution

Estimator τ̃ τ̃treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias -0.023 -0.159 -0.240 -0.218 0.002 -0.165 -0.244 -0.221

SD 0.287 0.102 0.124 0.095 0.416 0.107 0.126 0.097

RMSE 0.288 0.189 0.270 0.237 0.417 0.197 0.275 0.242

Unknown Error Distribution

Estimator τ̂ τ̂treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias -0.008 -0.158 -0.239 -0.217 0.021 -0.163 -0.243 -0.221

SD 0.337 0.102 0.125 0.094 0.538 0.106 0.127 0.097

RMSE 0.338 0.188 0.269 0.237 0.539 0.195 0.274 0.241

In Tables 1-3, results are reported for both τ̃ and τ̃treat, the proposed estimators for the case when the
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error distribution is known and only W is observed, and τ̂ and τ̂treat, the proposed estimators for the case

when the error distribution is unknown and both W and Wr are observed. Results are given for the bias

(Bias), standard deviation (SD), and the rooted mean squared error (RMSE) of each estimator in different

settings.

The results appear encouraging and display several interesting features. First, the estimators have

better performance with a larger sample size, and the performance of estimators is better with ordinary

smooth error compared to the supersmooth error case. We also note that the performance of the estimators

for the case when the error distribution is unknown is close to that of the estimators for the case when

the error distribution is known. Using the estimated error distribution generally adds extra noise to the

estimation. There are cases when the symmetry of the error distribution may allow the performance

of the estimator to be independent of whether the error distribution is estimated or not; see Dong et al.

(2020b). Finally, as to be expected, the proposed estimators have similar performance across different data

generating processes, which implies that they are robust to unobserved nonlinearity in the conditional

expectation function.

5 Application

To illustrate our estimator in practice, we revisit the analysis in Drexler et al. (2014).4 Drexler et al.

(2014) examine a randomized control trial (RCT) in which micro-entrepreneurs taking out a loan from

ADOPEM, a microfinance institution in the Dominican Republic, are randomly assigned to one of three

treatment arms to assess the causal effect of financial literacy programs on a firm’s financial practices, ob-

jective reporting quality, and business performance. The first treatment provided subjects with standard

accounting training. The second treatment provided rule-of-thumb training that covered basic financial

heuristics. The final group received neither training and serves as the control group. The authors find

significant beneficial effects of the rule-of-thumb training, but not the standard accounting training.

Our analysis deviates from Drexler et al. (2014) in one main respect. Whereas Drexler et al. (2014)

examine both treatments simultaneously using a single regression model estimated by OLS, we do not.

As our estimator is based on the IPW estimator, we examine each treatment separately. To do so, we

restrict the sample to a single treatment arm along with the control group. Thus, our sample sizes diverge

from the original study. Nonetheless, we present OLS estimates for comparison to Drexler et al. (2014)

and they are essentially identical.

Our results are presented in Tables 4 and 5. The only difference across the two tables is the set of

4Data are available at https://www.aeaweb.org/articles?id=10.1257/app.6.2.1.
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outcomes being analyzed.5 In each table, Columns 2 and 5 report the OLS estimates of the treatment

effect. These are most directly comparable to Drexler et al. (2014), subject to the caveat mentioned above

that we assess each treatment separately. Columns 3 and 6 report IPW estimates of the ATE treating all

covariates as correctly measured and estimating the propensity score via logit. Finally, Columns 4 and 7

report the results of our estimator for the ATE, treating the size of the loan as potentially mismeasured.

Because the application lacks any auxiliary information on possible measurement error in this covariate,

we assume the measurement error is normally distributed with mean zero and three different variance,

corresponding to increasing levels of measurement error. Specifically, we set the standard deviation of

the measurement error to be 1/6, 1/3, and 2/3 of the standard deviation of the observed loan values.

The bandwidth for the observed loan values, as in the simulation experiment, is chosen as two times the

optimal bandwidth suggested by Delaigle and Gijbels (2004), and bandwidths for other covariates, which

are supposed to be error-free, are chosen based on Li and Racine (2003).

The results are interesting. In terms of the standard accounting treatment, the results appear robust

to modest measurement in loan size. The only outcome for which the treatment effect is statistically

significant ignoring measurement error is “setting aside cash for business purposes”. Here, the OLS and

IPW estimates are both 0.07. With modest measurement error, our estimator yields a point estimate of

0.08. It is noteworthy, however, that we find even stronger effects as we increase the variance of the

measurement error.

In terms of the the rule-of-thumb treatment, the results appear predominantly robust to modest mea-

surement in loan size as well. In Table 4, all OLS and IPW estimates are statistically significant at con-

ventional levels. With modest measurement error, our estimator yields point estimates are qualitatively

unchanged; sometimes slightly larger and sometimes slightly smaller in absolute value. As we increase

the variance of the measurement error, however, the point estimates generally increase in magnitude.

Thus, the economic magnitudes of the treatment effects are sensitive to the degree of measurement error.

For example, increasing the standard deviation of the measurement error from 1/6 to 2/3 of the stan-

dard deviation of the observed loan values at least doubles the magnitude of the ATE for the outcomes

“setting aside cash for business purposes,” “keep accounting records,” “separate business and personal

accounting,” and ”calculate revenues formally”.

In Table 5, the only outcomes for which the treatment effect is statistically significant ignoring mea-

surement error are “any reporting errors” and “revenue index”. For the former, our estimator suggests, if

anything, a larger ATE in absolute value once measurement error is addressed. For the latter, our estima-

tor suggests a smaller ATE once measurement error is addressed.

5Note, we do not analyze one outcome included in Drexler et al. (2014). Savings amount is excluded from our analysis as the
first-stage propensity score ignoring measurement error did not converge.
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Table 4: Impact of Training on Business Practices and Performance

Dependent Variable Standard Accounting Rule-of-Thumb

OLS IPW IPW-ME OLS IPW IPW-ME

Business and Personal Financial Practices

Separate Business and 0.00 0.00 -0.05 0.08 0.08 0.08

Personal Cash (0.03) (0.03) {0.02} (0.03) (0.03) {0.10}

{{0.14}} {{0.24}}

524 532

Keep Accounting Records 0.04 0.04 0.05 0.12 0.12 0.08

(0.05) (0.05) {0.10} (0.03) (0.03) {0.09}

{{0.25}} {{0.21}}

524 533

Separate Business and 0.04 0.04 0.00 0.12 0.12 0.11

Personal Accounting (0.05) (0.05) {0.08} (0.03) (0.03) {0.14}

{{0.24}} {{0.25}}

521 532

Set Aside Cash for 0.07 0.07 0.08 0.12 0.12 0.13

Business Purposes (0.03) (0.03) {0.14} (0.04) (0.04) {0.14}

{{0.19}} {{0.23}}

524 532

Calculate Revenues 0.01 0.01 -0.03 0.06 0.06 0.07

Formally (0.04) (0.04) {0.04} (0.03) (0.03) {0.15}

{{0.16}} {{0.23}}

524 533

Business Practices 0.07 0.07 -0.15 0.14 0.14 0.13

Index (0.06) (0.06) {-0.17} (0.04) (0.04) {0.18}

{{-0.14}} {{0.15}}

525 534

Any Savings 0.01 0.01 -0.03 0.08 0.08 0.05

(0.05) (0.05) {0.01} (0.04) (0.04) {0.04}

{{0.19}} {{0.10}}

529 540

Notes: Sample includes only those individuals with own business and either exposed
to the treatment in the column heading or neither treatment. Number of observations
beneath results for each model. Standard errors for OLS and IPW are in parentheses
and are clustered at the barrio-level. IPW-ME reports only point estimates. The IPW-
ME estimates in first row for each outcome assume the variance of the measurement is
1/6 of the variance of the observed covariate; estimates in {} assume the variance of the
measurement is 1/3 of the variance of the observed covariate; estimates in {{}} assume
the variance of the measurement is 2/3 of the variance of the observed covariate. IPW
and IPW-ME estimates are of the average treatment effect.
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Table 5: Impact of Training on Business Practices and Performance

Dependent Variable Standard Accounting Rule-of-Thumb

OLS IPW IPW-ME OLS IPW IPW-ME

Objective Reporting Quality

Any Reporting Errors -0.04 -0.04 -0.09 -0.09 -0.09 -0.15

(0.04) (0.04) {-0.07} (0.03) (0.03) {-0.15}

{{-0.04}} {{-0.21}}

496 508

Raw Profit 918 914 1123 1094 1086 857

Calculation Difference (746) (726) {1158} (551) (538) {925}

(RD$), weekly {{262}} {{690}}

273 289

Absolute Value Profit -324 -368 -633 -642 -641 -840

Calculation Difference (643) (622) {-595} (471) (460) {-803}

(RD$), weekly {{-98}} {{-919}}

273 289

Business Performance

Total Number 0.08 0.08 0.37 -0.04 -0.04 0.11

of Employees (0.09) (0.09) {-0.02} (0.09) (0.09) {-0.01}

{{0.61}} {{0.98}}

523 533

Revenue Index -0.02 -0.02 -0.02 0.10 0.10 0.04

(0.05) (0.05) {-0.03} (0.05) (0.05) {0.04}

{{-0.09}} {{0.03}}

511 518

Sales, -649 -686 -543 604 665 220

Average Week (RD$) (810) (791) {-619} (942) (941) {-480}

{{1663}} {{130}}

367 386

Sales, -672 -696 -386 1168 1111 389

Bad Week (RD$) (513) (497) {-291} (538) (533) {641}

{{116}} {{-35}}

359 373

Notes: Sample includes only those individuals with own business and either exposed
to the treatment in the column heading or neither treatment. Number of observations
beneath results for each model. Standard errors for OLS and IPW are in parentheses
and are clustered at the barrio-level. IPW-ME reports only point estimates. The IPW-
ME estimates in first row for each outcome assume the variance of the measurement is
1/6 of the variance of the observed covariate; estimates in {} assume the variance of the
measurement is 1/3 of the variance of the observed covariate; estimates in {{}} assume
the variance of the measurement is 2/3 of the variance of the observed covariate. IPW
and IPW-ME estimates are of the average treatment effect.
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6 Conclusion

Estimation of the causal effect of a binary treatment on outcomes, even in the case of selection on observed

covariates, can be complicated when one or more of the covariates are measured with error. In this paper,

we present a new semi-parametric estimator that addresses this issue. In particular, we focus on the

case when the propensity score is of an unknown functional form and some covariates are subject to

classical measurement error. Allowing the functional form of the propensity score to be unknown as well

as a function of unobserved, error-free covariates, we consider an integration weighted by deconvolution

kernel density estimator. Our simulations and replication exercise show our estimator to be valuable to

empirical researchers. However, future work is needed to conduct inference with this estimator.
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A Derivation of Equations
A.1 Derivation of (6) and (7)

(6) follows by τ = E[Y(1)−Y(0)] and for t = 0, 1,

E[Y(t)] = E[E[Y(t)|X, Z]] = E[E[Y(t)|T = t, X, Z]] = E[E[Y|T = t, X, Z]]

=
∫∫∫

y fY|T=t,X=x,Z=z(y)dy fX,Z(x, z)dxdz

= P(T = t)
∫

y

{∫∫ fY,X,Z|T=t(y, x, z) fX,Z(x, z)
fX,Z|T=t(x, z)P(T = t)

dxdz

}
dy

= P(T = t)
∫∫∫ y fY,X,Z|T=t(y, x, z)

P(T = t|X = x, Z = z)
dydxdz,

where the second step follows by Assumption 1 and the last step requires Assumption 2. (7) follows by

τtreat = E[Y(1)−Y(0)|T = 1], E[Y(1)|T = 1] = E[Y|T = 1] = E[TY]/p, and

E[Y(0)|T = 1] = E[E[Y(0)|T = 1, X, Z]|T = 1]

= E[E[Y(0)|T = 0, X, Z]|T = 1]

= E[E[Y|T = 0, X, Z]|T = 1]

=
∫∫ {∫

y fY|T=0,X=x,Z=z(y)dy
}

fX,Z|T=1(x, z)dxdz

=
∫∫∫ y fX,Z|T=1(x, z)

fX,Z|T=0(x, z)
fY,X,Z|T=0(y, x, z)dydxdz

= E

[
Y fX,Z|T=1(X, Z)
fX,Z|T=0(X, Z)

∣∣∣∣∣ T = 0

]

=
1− p

p
E
[

YpX,Z(X, Z)
1− pX,Z(X, Z)

|T = 0
]

,

where the first step follows by Assumption 1 and the last step requires Assumption 2.
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A.2 Derivation of (5)

E[Y(1)] = E
[

TY
pX,Z(X, Z)

]
= p

∫∫
E[TY|X = x, Z = z] fX,Z|T=1(x, z)dxdz

= p
∫∫ { 1

2π

∫
e−isx {E[TY|W = ·, Z = z]}ft(s)

f ft
ε (s)

ds
}{

1
2π

∫
e−itx { fW,Z|T=1(·, z)}ft(t)

f ft
ε (t)

dt

}
dxdz

=
p

2π

∫∫∫ { 1
2π

∫
e−i(s+t)xdx

} {E[TY|W = ·, Z = z]}ft(s){ fW,Z|T=1(·, z)}ft(t)
f ft
ε (s) f ft

ε (t)
dsdtdz

=
p

2π

∫∫ {E[TY|W = ·, Z = z]}ft(−t){ fW,Z|T=1(·, z)}ft(t)
| f ft

ε (t)|2
dtdz

=
p

2π

∫∫ {∫
E[TY|W = w, Z = z]e−itwdw

} { fW,Z|T=1(·, z)}ft(t)
| f ft

ε (t)|2
dtdz

=
∫∫

E[TY|W = w, Z = z]


p
∫

e−itw { fW,Z|T=1(·,z)}ft(t)
| f ft

ε (t)|2
dt

2π fW,Z(w, z)

 fW,Z(w, z)dwdz

= E[TYA(W, Z)],

where the sixth equality follows by
∫

δ(x− b) f (x)dx = f (b) with Dirac delta function δ(x) = 1
2π

∫
e−itxdx.

A.3 Derivation of (11) and (12)

τ̃ =
∫∫∫ { p̂ f̃Y,X,Z|T=1(y, x, z)

p̃X,Z(x, z)
−

(1− p̂) f̃Y,X,Z|T=0(y, x, z)
1− p̃X,Z(x, z)

}
ydydxdz

=
1

nb3
n

n

∑
j=1

∫∫


TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

) −
(1− Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

)


{∫

K
(

y−Yj

bn

)
ydy
}

dxdz

=(1)
1

nb2
n

n

∑
j=1

∫∫


TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

) −
(1− Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

)


{∫

K (ỹ) (Yj + bnỹ)dỹ
}

dxdz

=(2)
1

nb2
n

n

∑
j=1

Yj

∫∫


TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

) −
(1− Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

)

 dxdz

=
∫∫ { q̂1,1(x, z)

q̂0,1(x, z)
− q̂1,0(x, z)

q̂0,0(x, z)

}
q̂(x, z)dxdz,

where (1) follows by change of variables ỹ =
y−Yj

bn
and (2) follows by

∫
K(x)dx = 0 and

∫
K(x)xdx = 0.
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τ̃treat =
1
p̂

∫∫∫ {
p̂ f̃X,Y,Z|T=1(x, y, z)−

p̃X,Z(x, z)(1− p̂) f̃X,Y,Z|T=0(x, y, z)
1− p̃X,Z(x, z)

}
ydxdydz

=
1

nb3
n p̂

n

∑
j=1

∫∫ 
TjK

(
x−Wj

bn

)
K
(

z−Zj
bn

)
−

(1−Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)


{∫

K
(

y−Yj

bn

)
ydy
}

dxdz

=(1)
1

nb2
n p̂

n

∑
j=1

∫∫ 
TjK

(
x−Wj

bn

)
K
(

z−Zj
bn

)
−

(1−Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)


{∫

K (ỹ) (Yj + bnỹ)dỹ
}

dxdz

=(2)
1

nb2
n p̂

n

∑
j=1

Yj

∫∫ Tj −
(1− Tj)∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1(1− Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
K

(
x−Wj

bn

)
K
(

z− Zj

bn

)
dxdz

=
∫∫ {

q̂1,1(x, z)− q̂1,0(x, z)q̂0,1(x, z)
q̂0,0(x, z)

}
1
p̂

dxdz,

where (1) follows by change of variables ỹ =
y−Yj

bn
and (2) follows by

∫
K(x)dx = 0 and

∫
K(x)xdx = 0.

The integrations in (11) and (12) are restricted on X and Z to emphasize that it is sufficient to integrate

over the supports of X and Z.

B Proof of Theorems

B.1 Proof of Theorem 1

To identify τ and τtreat, it is sufficient to identify fY,X,Z|T as p(x, z) =
p fX,Z|T=1(x,z)

p fX,Z|T=1(x,z)+(1−p) fX,Z|T=0(x,z) and

fX,Z|T(x, z) =
∫

fY,X,Z|T(y, x, z)dy. Let { fY,W,Z|T(y, ·, z)}ft(t) =
∫

eitw fY,W,Z|T(y, w, z)dw. The identification

of fY,X,Z|T follows by

fY,X,Z|T(y, x, z) =
1

2π

∫
e−itx { fY,W,Z(y, ·, z)}ft(t)

f ft
ε (t)

dt,

for which we use the convolution theorem under Assumption 3.

B.2 Proof of Theorem 2

Define q(x, z) = fX,Z(x, z) and qk,s(x, z) = {mk
X,Z,s pX,Z,s fX,Z}(x, z) for k, s = 0, 1, where mX,Z,s(x, z) =

E[Y(s)|X = x, Z = z] and pX,Z,s(x, z) = ps
X,Z(x, z)(1− pX,Z(x, z))1−s. Then, we have

τ =
∫
X

∫
Z

{
q1,1(x, z)
q0,1(x, z)

− q1,0(x, z)
q0,0(x, z)

}
q(x, z)dxdz, (15)
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τtreat =
∫
X

∫
Z

{
q1,1(x, z)− q1,0(x, z)q0,1(x, z)

q0,0(x, z)

}
1
p

dxdz. (16)

First, using ûv̂− uv = (û− u)v + (v̂− v)u + (û− u)(v̂− v) and v̂−1 − v−1 = −(v̂− v){v(v̂− v) +

v2}−1, we have

q̃1,sq̃
q̃0,s
− q1,sq

q0,s
=
{(q̃1,s − q1,s)q + (q̃− q)q1,s + (q̃1,s − q1,s)(q̃− q)}q0,s − (q̃0,s − q0,s)q1,sq

q0,s(q̃0,s − q0,s) + q2
0,s

, (17)

q̃1,1

p̂
− q1,1

p
=

(q̃1,1 − q1,1)p− ( p̂− p)q1,1

p( p̂− p) + p2 , (18)

q̃1,0q̃0,1

q̃0,0 p̂
− q1,0q0,1

q0,0 p
=

 {(q̃1,0 − q1,0)q0,1 + (q̃0,1 − q0,1)q1,0 + (q̃1,0 − q1,0)(q̃0,1 − q0,1)}pq0,0

−{( p̂− p)q0,0 + (q̃0,0 − q0,0)p + ( p̂− p)(q̃0,0 − q0,0)}q1,0q0,1


pq0,0{( p̂− p)q0,0 + (q̃0,0 − q0,0)p + ( p̂− p)(q̃0,0 − q0,0)}+ p2q2

0,0
, (19)

where we intentionally suppress the dependence of q̂, q̂k,s, q, and qk,s on x and z for k, s = 0, 1 to keep the

notation simple.

For τ̃, note that

|τ̃ − τ| =

∣∣∣∣∣∣
∫
X

∫
Z


{

q̃1,1(x,z)q̃(x,z)
q̃0,1(x,z) − q1,1(x,z)q(x,z)

q0,1(x,z)

}
−
{

q̃1,0(x,z)q̃(x,z)
q̃0,0(x,z) − q1,0(x,z)q(x,z)

q0,0(x,z)

}
 dxdz

∣∣∣∣∣∣
= O

(
max

s∈{0,1}
sup

(x,z)∈X×Z

∣∣∣∣ q̃1,s(x, z)q̃(x, z)
q̃0,s(x, z)

− q1,s(x, z)q(x, z)
q0,s(x, z)

∣∣∣∣
)

= O

 max
s∈{0,1}



sup(x,z)∈X×Z |q̃1,s(x, z)− q1,s(x, z)| sup(x,z)∈X×Z |q0,s(x, z)| sup(x,z)∈X×Z |q(x, z)|

+ sup(x,z)∈X×Z |q̃(x, z)− q(x, z)| sup(x,z)∈X×Z |q1,s(x, z)| sup(x,z)∈X×Z |q0,s(x, z)|

+ sup(x,z)∈X×Z |q̃1,s(x, z)− q1,s(x, z)| sup(x,z)∈X×Z |q̃(x, z)− q(x, z)| sup(x,z)∈X×Z |q0,s(x, z)|

+ sup(x,z)∈X×Z |q̃0,s(x, z)− q0,s(x, z)| sup(x,z)∈X×Z |q1,s(x, z)| sup(x,z)∈X×Z |q(x, z)|




= O

(
max

k,s∈{0,1}
sup

(x,z)∈X×Z
|q̃k,s(x, z)− qk,s(x, z)|+ sup

(x,z)∈X×Z
|q̃(x, z)− q(x, z)|

)
,

where the first step follows by (6) and (15), the second step follows by the compactness of X and Z (As-

sumption 4 (i)), the third step follows by (17), sup(x,z)∈X×Z |q̂0,s(x, z)− q0,s(x, z)| = op(1) (Lemma 1 and

Assumption 4 (iv)), and inf(x,z)∈X×Z |q0,s(x, z)| > 0 (Assumption 4 (i)) for s = 0, 1, and the last step fol-

lows by sup(x,z)∈X×Z |q(x, z)| < ∞ (Assumption 4 (i)), sup(x,z)∈X×Z |qk,s(x, z)| < ∞ (Assumption 4 (i)),

and sup(x,z)∈X×Z |q̂k,s(x, z)− qk,s(x, z)| = op(1) (Lemma 1 and Assumption 4 (iv)) for any k, s = 0, 1.
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For τ̃treat, note that

|τ̃treat − τtreat| =

∣∣∣∣∣∣
∫
X

∫
Z


{

q̃1,1(x,z)
p̂ − q1,1(x,z)

p

}
−
{

q̃1,0(x,z)q̃0,1(x,z)
p̂q̃0,0(x,z) − q1,0(x,z)q0,1(x,z)

pq0,0(x,z)

}
 dxdz

∣∣∣∣∣∣
= O

(
sup

(x,z)∈X×Z

∣∣∣∣ q̃1,1(x, z)
p̂

− q1,1(x, z)
p

∣∣∣∣+ sup
(x,z)∈X×Z

∣∣∣∣ q̃1,0(x, z)q̃0,1(x, z)
p̂q̃0,0(x, z)

− q1,0(x, z)q0,1(x, z)
pq0,0(x, z)

∣∣∣∣
)

= O



sup(x,z)∈X×Z |q̃1,1(x, z)− q1,1(x, z)|+ | p̂− p| sup(x,z)∈X×Z |q1,1(x, z)|

+ sup(x,z)∈X×Z |q̃1,0(x, z)− q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)| sup(x,z)∈X×Z |q0,0(x, z)|

+ sup(x,z)∈X×Z |q̃0,1(x, z)− q0,1(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,0(x, z)|

+ sup(x,z)∈X×Z |q̃1,0(x, z)− q1,0(x, z)| sup(x,z)∈X×Z |q̃0,1(x, z)− q0,1(x, z)| sup(x,z)∈X×Z |q0,0(x, z)|

+| p̂− p| sup(x,z)∈X×Z |q0,0(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)|

+ sup(x,z)∈X×Z |q̃0,0(x, z)− q0,0(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)|

+| p̂− p| sup(x,z)∈X×Z |q̃0,0(x, z)− q0,0(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)|


= O

(
max

k,s∈{0,1}
sup

(x,z)∈X×Z
|q̃k,s(x, z)− qk,s(x, z)|+ | p̂− p|

)
,

where the first step follows by (7) and (16), the second step follows by the compactness of X and Z

(Assumption 4 (i)), the third step follows by (18), (19), | p̂− p| = op(1) (Lemma 1 and Assumption 4 (i)),

sup(x,z)∈X×Z |q̃0,0(x, z)− q0,0(x, z)| = op(1) (Lemma 1 and Assumption 4 (iv)), 0 < p < 1 (Assumption 2),

inf(x,z)∈X×Z |q0,0(x, z)| > 0 (Assumption 4 (i)), and the last step follows by sup(x,z)∈X×Z |qk,s(x, z)| < ∞

(Assumption 4 (i)) and sup(x,z)∈X×Z |q̃k,s(x, z)− qk,s(x, z)| = op(1) (Lemma 1 and Assumption 4 (iv)) for

any k, s = 0, 1. The conclusion then follows by implementing Lemma 1.

C Lemmas

To facilitate the proof of Theorem 4, we introduce following Lemma, where q, q̂, qk,s, and q̂k,s for k, s = 0, 1

are the same as defined in Appendix B.2.

Lemma 1. Under Assumptions 3 and 4 (i) - (iii), it holds | p̂− p| = Op
(
n−1/2) and

sup
(x,z)∈X×Z

|q̂(x, z)− q(x, z)| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 ,

max
k,s∈{0,1}

sup
(x,z)∈X×Z

|q̂k,s(x, z)− qk,s(x, z)| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 .

Proof. The first statement follows by E| p̂− p|2 = E|T|2
n ≤ n−1. For the rest two statements, we focus on
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the last one as the second statement can be shown in a similar way.

First, note that

E[q̂k,s(x, z)] = b−2
n E

[
Yk

j Ts
j (1− Tj)

1−s

{
1

2π

∫
e
−it
(

x−Wj
bn

)
Kft(t)

f ft
ε (t/bn)

dt

}
K
(

z− Zj

bn

)]

= b−2
n E

[
Yk

j Ts
j (1− Tj)

1−s

{
1

2π

∫
e
−it
(

x−Xj
bn

)
Kft(t)dt

}
K
(

z− Zj

bn

)]

= b−2
n E

[
Yk

j Ts
j (1− Tj)

1−sK
(

x− Xj

bn

)
K
(

z− Zj

bn

)]
=
∫

qk,s(x− bnũ, z− bnṽ)K(ũ)K(ṽ)dũdṽ

= qk,s(x, z) + O
(
bγ

n
)

,

where the first step follows by the definition of the deconvolution kernel K, the second step follows by the

independence between ε and (Y, T, X, Z) (Assumption 3), the third step follows by K(x) = 1
2π

∫
e−itxKft(t)dt,

the fourth step follows by the change of variables ũ = x−u
bn

and ṽ = z−v
bn

, and the last step follows by the

smoothness of fX,Z, pX,Z, and E[Y(s)|X, Z] (Assumption 4 (ii)) and properties of the γ-th order kernel

function K (Assumption 4 (iii)).

Also note that

Var(q̂k,s(x, z)) ≤ 1
nb4

n
E
∣∣∣∣Yk

j Ts
j (1− Tj)

1−sK

(
x−Wj

bn

)
K
(

z− Zj

bn

)∣∣∣∣2
= O

 1
nb4

n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−2 ∫∫∫ ∣∣∣∣K( z− v
bn

)∣∣∣∣2 {E[Y2k
j Ts

j (1− Tj)
1−s|X, Z] fX,Z}(u, v) fε(η)dudvdη


= O

 1
nb3

n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−2 ∫∫
|K(ṽ)|2 {E[Y2k

j Ts
j (1− Tj)

1−s|X, Z] fX,Z}(u, z− bnṽ)dudṽ


= O

 1
nb3

n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−2
 ,

where the first step follows by the random sampling (Assumption 4 (i)), the second step follows by the

fact that Kft is supported on [−1, 1] (Assumption 4 (iii)), the third step uses the change of variables ṽ =

z−v
bn

, and the last step follows by the boundedness of E[Y2
j (s)|X, Z] for s = 0, 1 (Assumption 4 (i)), the

smoothness of fX,Z (Assumption 4 (ii)), and properties of the γ-th order kernel function K (Assumption 4

(iii)).
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