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1 Introduction

The Supplemental Nutrition Program for Women, Infants, and Children (WIC) was established as an early

intervention program to improve the outcomes of low income pregnant and lactating women, infants, and

children under �ve. The WIC has been the focus of recent and ongoing research. This is partly driven by

the growing perception that early life conditions have long term impacts on adult life outcomes (Almond

and Currie, 2010). On the other hand, the sheer scope and prominence of the WIC program have spurned

this academic and policy interest in its e¢ cacy: there were approximately 9.17 million WIC recipients in

the �scal year (FY) 2010.2

There is a third reason for the growing body of research onWIC. Like most transfer programs, evaluation

of WIC e¢ cacy is complicated by two distinct identi�cation problems. First, selection into WIC is non-

random. Observable (in the data) characteristics and unobservable attributes of the participants may be

associated with both program participation and health outcomes. Second, WIC participation is severely

under-reported in large scale, nationally representative household surveys like the Survey of Income and

Program Participation (SIPP) and the Current Population Survey (CPS). While the existing literature

is discussed in greater detail in Section 3, for now I simply note that the existing literature suggests a

bene�cial causal e¤ect. These estimated e¤ects are, however, plagued by de�ciencies such as reliance on

potentially invalid instruments or other faulty identi�cation assumptions in the face of both non-random

selection and large scale under-reporting of WIC participation.

This study is the �rst attempt, to the best of my knowledge, to simultaneously address the twin

identi�cation problems of endogeneity and measurement error (ME) in identifying the causal e¤ect of

prenatal WIC receipt on birth outcomes.

To that e¤ect, I use the nonparametric bounding method proposed in Kreider et al. (2011) accounting

for both of these problems in a single unifying framework. This partial identi�cation approach suits the

analysis of WIC for a number of reasons. First, existing solutions using classical approaches - instrumen-

tal variables (IV) and family-speci�c �xed e¤ects models - are inconclusive and perhaps rely on faulty

assumptions. Second, addressing classi�cation error in binary regressors like the indicator of WIC receipt

is complicated; and the classical assumption of ME being independent of the true participation indicator

is invalid with large scale systematic under-reporting in case of programs like the WIC and food stamps

(Kreider et. al, 2011 and Bollinger, 1996).3 Third, if the self-reported indicator of WIC receipt is measured

with error, it is likely that a valid instrument for WIC receipt is correlated with the ME as well (Black et

al., 2000). Family-speci�c �xed e¤ects models, on the other hand, fail to account for potentially important,

2See:http://www.fns.usda.gov/wic/wic-fact-sheet.pdf
3Those eligible for food stamps are automatically eligible for WIC.
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individual-speci�c unobservable attributes as well as exacerbate the ME problem (Griliches, 1977).

This method provides sharp bounds on the average treatment e¤ect (ATE) of prenatal WIC partic-

ipation when the participation indicator is measured with arbitrary error. Moreover, these bounds do

not require the assumptions of an IV, classical ME, and the linear response model. These require weaker

assumptions with possibly greater consensus in the literature and address both ME and selection into WIC.

These bounds on the ATE are thus an important step towards identifying the causal e¤ect of the WIC

program and reducing the uncertainty in existing evaluations of the causal impact of participation.

In terms of the selection problem, I start with the exogenous case. Then, I discuss what can be learned

without making any assumptions concerning the selection mechanism (see Manski, 1995 and Pepper, 2000).

Then, I impose several identi�cation assumptions: Monotone Instrumental Variable (MIV) assumption

that the latent probability of a good health outcome is nondecreasing in socioeconomic status (SES);

the Monotone Treatment Selection (MTS) assumption that infants whose mothers chose to participate

in WIC during pregnancy have a lower probability of a good health outcome on average compared to

non-participants; and the Monotone Treatment Response (MTR) assumption that prenatal participation

in WIC cannot worsen birth outcomes since the program�s aim is to provide nutritional supplements and

educational counselling to potentially improve birth outcomes. The MIV is a weaker assumption than that

required for an IV. The MTS assumption allows for negative selection into WIC, a well established �nding

in the literature.

In terms of the ME problem, the empirical literature on WIC (as discussed below) suggests that eligible

women rarely falsely claim WIC receipt. To de�ne the ME problem, I �rst assume arbitrary patterns of

ME ranging from zero to 10%, and then allow for no false positive errors in consonance with reports of

prenatal WIC receipt being more accurate than those of non-receipt.

While the existing literature is plagued by the lack of convincing instruments, the identi�cation problem

is exacerbated in the presence of ME. So, to identify the point estimates of the causal e¤ect of WIC,

complementing the bounds, I turn to the IV strategy proposed in Lewbel (2010). This approach exploits

conditional second moments to circumvent the need for traditional instruments when the latter are absent

or suspect. Identi�cation is achieved through the presence of covariates related to the conditional variance

of the �rst-stage errors, but not the conditional covariance between �rst- and second-stage errors.

I use data on over 4,000 nine month old infants from the Early Childhood Longitudinal Study - Birth

cohort of 2001 (ECLS-B). The sample is restricted to households at the WIC eligibility threshold of 185% of

the federal poverty level (FPL).4 I provide informative bounds on the ATE of prenatal WIC participation of

4 I assume that poverty status (at or below 185% FPL) is unchanged since before the child�s birth for the mother to be

eligible for WIC prenatally. Since this is the �rst wave of the survey, there is no way I can verify this assumption.
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the mother on binary positive birth outcomes like birth weight of at least 1500 grams, at least 2500 grams,

at most 4000 grams, normal birth weight (between 2500 grams and 4000 grams), near-term pregnancy

(gestation age of at least 33 weeks), and full term pregnancy (gestation age between 38 and 42 weeks).

The timing of the survey is such that the mother reports prenatal WIC receipt when the child is at least

nine months old. That is, the lag between actually receiving the WIC bene�ts and reporting the same is

anywhere between 9 months to 18 months.5 So, along with social stigma, simple recall error introduces

another source of ME in self-reported WIC participation.

The results are striking and ought to serve as a note of caution and guide to future evaluations of the

WIC program. First, there is selection at least on observables and thus likely also on unobservables such as

a family�s �nancial status, expectations about future health outcomes, motivation towards work and family,

mother�s nutrition knowledge, and the desire to be a good mother which can be simultaneously associated

with both program participation and outcomes (Bitler and Currie, 2005 and Currie, 2003). Families may

decide to participate only if they expect to be worse o¤ otherwise.

Second, bounds that account for selection only �ignoring the possibility of ME �show that prenatal

WIC receipt indeed increases the probability of birth weight of at least 1500 grams, 2500 grams, and

the probability of normal birth weight, and lowers the probability of birth weight exceeding 4000 grams.

Prenatal WIC participation also leads to an increase in gestation age of the child. Third, bounds accounting

for both ME and selection fail to sign the ATE for any outcome without imposing additional assumptions

beyond those considered here. I am unable to conclude there exists a causal e¤ect (positive or negative)

of prenatal WIC receipt on birth outcomes even if as few as one percent of eligible women misreport their

participation.

This evidence has strong implications since WIC caters to a very special population of low-income

pregnant, postpartum women, and their children. This sub-population is arguably in maximum need of

nutritious food, regular health check ups, and counselling. The existing literature acknowledges the serious

under-reporting problem, of possibly much greater than one percent, and its potential consequence on

evaluating the program�s e¤ectiveness. In this �rst step (of which I am aware) towards quantifying the

consequence of ME in reports of prenatal WIC receipt, I show that even one percent of ME is su¢ cient to

render the evidence concerning the causal e¤ect of participation inconclusive. Any greater degrees of ME

will only worsen the situation. This study illustrates what can (or cannot) be learned in the presence of

ME without additional identifying assumptions that are not likely to be convincing. Accordingly, future

work should be cognizant of the consequence of ME and account for both these identi�cation problems in

isolating the causal e¤ect of participation in WIC. Alternatively, experimental evidence may be necessary

5The ECLS-B does not provide information on the duration of WIC receipt.
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to obtain credible estimates of the causal e¤ect of the program.

The rest of the paper is organized as follows. I describe the WIC program in Section 2 and summarize

the existing literature in Section 3. Section 4 describes the data. In Section 5, I de�ne the empirical

questions and present the nonparametric models and the IV strategy proposed in Lewbel (2010). The

results are discussed in Section 6, while Section 7 concludes.

2 The WIC Program

The WIC program was established as a pilot program in 1972 by an amendment to the Child Nutrition

Act of 1966.6 It was made permanent in 1974. Like many other programs in the U.S. social safety net,

WIC is a federally-funded grant program run by the states.

The principal goal of WIC, since its inception, is to provide nutritious food, directly or through vouchers,

and nutritional and health counselling to pregnant and postpartum women, infants, and children less than

�ve years old, at no charge. This is the �rst categorical eligibility criterion for WIC.

Additionally, in order to be eligible for WIC, the maximum allowable family gross income must not ex-

ceed 185% of the FPL. WIC agencies at the state level authorize the local providers to determine eligibility

based on family income during the past one year or current family income. Moreover, Supplemental Nu-

trition Assistance Program (SNAP), Medicaid, and the Temporary Assistance for Needy Families (TANF)

recipients automatically (�adjunctively�) qualify for WIC. This adjunctive eligibility rule has been criti-

cized since income eligibility expansions in other programs draw higher income women into the ambit of

WIC for whom a food package worth $35 may have little e¤ect, thus undermining the e¤ectiveness of the

program. Moreover, insu¢ cient funds are allocated to nutritional education with a much greater potential

impact (e.g., Besharov and Germanis, 2001 and Besharov and Call, 2009). Since 2000, by federal law,

income proofs are required in all states thus quelling some of the controversy related to the number of

eligibles being served.

The last criterion for WIC requires recipients to be at nutritional risk, as determined by a physician,

nutritionist, or nurse. In practice, all likely recipients satisfy at least one of the nutritional risk criteria

(Ver Ploeg and Betson, 2003).7

Most WIC state agencies issue vouchers or checks to participants for purchase of speci�c foods every

month. Some states also issue electronic bene�t cards instead of paper checks or vouchers. All WIC state

agencies will be required to implement electronic bene�t transfer (EBT) statewide by October 1, 2020.

6See:http://www.ers.usda.gov/publications/fanrr27/fanrr27c.pdf
7Brien and Swann (2001) enlist some of the risk criteria followed at the Je¤erson WIC Clinic in Charlottesville, VA.
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In terms of program participation, WIC has come a long way from 88,000 enrollees in 1974, its �rst

year of operation. Monthly participation reached 1.9 million in 1980 and 7.2 million by 2000. During FY

2010 there were approximately 9.17 million WIC bene�ciaries. Children constitute the majority of WIC

recipients. Of the 9.17 million WIC recipients each month in FY 2010, about 4.86 million were children,

2.17 million were infants, and 2.14 million were women. In the �rst 8 months of FY 2011, states reported

an average monthly participation of slightly less than 9 million.

WIC stands apart from all major transfer programs in that it is not an entitlement program in the

sense that the Congress does not allocate funds separately for WIC to allow every eligible person to

participate. Despite that, Ver Ploeg and Betson (2003) suggest that all those who visit WIC clinics are

served as showcased by the disappearance of waiting lines. Sometimes, however, the turn out at WIC

clinics exceeds the resources available to state agencies, in which case only those on the top of a speci�c list

are served. These invariably include pregnant women (Brien and Swann, 2001). Historically, the Congress

appropriated only $20.6 million in 1974 which steadily increased to $2.1 billion in 1990 and $4.0 billion in

2000. In FY 2011, Congress legislated $6.734 billion for WIC.8

3 Literature Review

Almond and Currie (2010) discuss a recent report from the Institute of Medicine that �nds, for a very

special sub-population of women at preterm birth risk, that even randomized trials of several intensive

interventions to prevent preterm births fail to �nd any e¤ect. This casts serious doubt on the existing

estimated e¤ects of WIC on birth outcomes.

The existing research on WIC has tried to address this critique using di¤erent data sets and methodolo-

gies. Most of the research relies on administrative birth certi�cate data for birth outcomes matched with

household survey data for information on participation (Figlio et al., 2009). Since the WIC participation

information often comes from survey data, it is possible that it is measured with error. However, the

existing evaluations are dominated by empirical strategies to address the non-random selection problem

while virtually ignoring the evidence of large scale misreporting of WIC receipt in household surveys. Thus,

they fail to isolate the causal e¤ect of WIC in the face of both measurement error and endogeneity in WIC

participation.

Early works evaluating WIC assume exogenous selection into WIC and ignore ME. For example, Bar-

bara Devaney and her coauthors �nd that women on WIC bear healthier children compared to non-

participants at a lower cost to the state (e.g., Devaney et al., 1992). Currie (2003) review similar early

8See:http://www.fns.usda.gov/wic/wic-fact-sheet.pdf. All values are in nominal terms.
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contributions on the positive association between prenatal WIC participation and birth outcomes, nu-

tritional intake, and breast-feeding practices, with the largest gains recorded for children of the most

disadvantaged mothers.

However, several contributors rule out random selection on observables as well as unobservables. Some

contend that more motivated or healthier women with possibly better access to medical care may self-select

into WIC thus biasing the estimated e¤ect of WIC upwards (e.g., Germanis and Besharov, 2001; Brien and

Swann, 2001; Chatterji et al., 2002; and Kowaleski-Jones and Duncan, 2002). Others like Bitler and Currie

(2005) include a long list of unfavorable observables related to education, health, and family relationships

to argue that WIC mothers must have other very strong unobservable attributes, systematically correlated

with good outcomes, to justify positive selection on unobservables into WIC.

As a result, addressing the selection problem lies at the heart of the recent studies. Several analyses

address the selection issue by leveraging observable similarities between participants and non-participants

in narrowly de�ned samples (e.g., Bitler and Currie, 2005; Joyce et al., 2005, 2008; and Figlio et al., 2009).

For example, Bitler and Currie (2005) use the Pregnancy Risk Assessment Monitoring System (PRAMS)

and selection correction models in a homogeneous sample of Medicaid eligible women to focus only on the

observable di¤erences between participants and non-participants. They conclude that �WIC does work�

by improving birth outcomes, despite negative selection, at least on observables (Bitler and Currie, 2005,

p. 88). The impact is larger for the more disadvantaged women.

Figlio et al. (2009), for instance, merge three large administrative data sets on infants from Florida

to match the school records of their older siblings to exploit the latter�s participation in the National

School Lunch Program (NSLP). They label families �marginally ineligible� if they participated in the

years adjacent to the birth year, but not in the birth year. Their innovative instrument is a federal policy

change in September 1999 that raised the income proof requirements for WIC in Florida, making it harder

for WIC applicants to receive bene�ts. They �nd that participation in WIC has a bene�cial causal e¤ect

in compressing the birth weight distribution towards a healthier range, but has no signi�cant impact on

gestation age. However, one cannot rule out the possibility of mismatching due to imperfect linking of

information across administrative data sets (Kapteyn and Ypma, 2007).

Hoynes et al. (2011) argue that unobservable di¤erences remain between participants and non-participants

even in narrowly de�ned samples such as in Bitler and Currie (2005) and Figlio et al. (2009). They also

highlight the drawbacks of using other methodologies to address the selection problem such as unobservable

di¤erences between participating and non-participating siblings (e.g., Brien and Swann, 2001; Chatterji et

al., 2002; and Kowaleski-Jones and Duncan, 2002) or state variations in program rule and eligibility (e.g.,
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Brien and Swann, 2001 and Chatterji et al., 2002).9 Additionally, none of these works discuss the potential

consequences of ME in reports of WIC receipt in survey data.

Most recently, Hoynes et al. (2011) evaluate the performance of WIC at the time of its establishment

as a pilot program in 1972. They address the selection problem by exploiting the plausibly exogenous

variation in participation due to the staggered introduction of the program in the 1970s. Employing a

di¤erence-in-di¤erences technique and WIC program data, they report that the introduction of WIC has

a bene�cial causal e¤ect on infant health. The availability of WIC in the county of birth by the third

trimester increases the average birth weight in the county by about 2 grams and by 7 grams for infants

born to less educated women. However, it is important to note, as Kapteyn and Ypma (2007) point out,

that administrative data may not be perfect as well since one cannot rule out the possibility of mismatching

due to imperfect linking of information. Moreoever, the authors concede that the number of the treated

women (who received WIC bene�ts during its early years) is only an indirect estimate. So, the estimated

treatment e¤ect on the treated may not be unbiased.

Turning now to the evidence on ME in the WIC literature, Bitler et al. (2003) compare the SIPP

and the CPS to state level administrative data. They �nd that the under-reporting problem is the most

severe for WIC compared to other transfer programs. The CPS (SIPP) captures only 70% (75%) of the

WIC administrative caseload compared to, for example, 85% (90%) of food stamp recipients. The authors

hypothesize that this is probably associated with greater stigma for WIC recipients since the purchase of

certain types of food is subject to veri�cation by the cashier for WIC eligibility. In the SIPP sample of WIC

recipients, the undercount problem is worse for women. However, the undercount problem appears to be

random since demographic characteristics of WIC recipients closely resemble the administrative caseloads.

Recently, Meyer et al. (2009) emphasize that the under-reporting problem is synonymous to under-

statement and under-recording since it is possibly due to discrepancies on the part of both interviewees and

interviewers. They use the CPS, the SIPP, the Panel Study of Income Dynamics (PSID), the American

Community Survey (ACS), and the Consumer Expenditure Interview Survey (CE Survey) to analyze the

large scale under-reporting phenomenon in several transfer programs. Unobservable, often unveri�able

factors like continuity of receipt, the social stigma of being on a �welfare�program, imperfect interviewee

recall, sensitivity of income information, and possibly a desire to reduce interview burden potentially drive

the under-reporting. This problem is likely even worse in the case of the ECLS-B since women are asked

about prenatal WIC participation when the child is at least nine months old.

In summary, the literature on prenatal WIC participation and birth outcomes admits negative selection

into WIC as well as severe under-reporting of WIC receipt in household surveys. However, to date, there

9The treatment considered in Chatterji et al. (2002) is postpartum participation in WIC by the mother.
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has not been any study that addresses both these identi�cation problems simultaneously to isolate the

causal e¤ect of WIC on infant health outcomes.

4 Data

The data come from the ECLS-B. It follows a nationally representative cohort of children born in 2001

through �rst grade. Assembled by the U.S. Department of Education, the ECLS-B focuses on children�s

early environmental characteristics like health care and in- and out-of-home experiences that play a crucial

role in the overall development of children and the �rst brush with the demands of formal school. The

survey has collected information directly from the children�s fathers along with the mothers, video-taped

parent-child interaction, and assessed child care settings for the sampled children. Actual data collection

occurred between Fall 2001 and Fall 2002. The parents of 10,700 children born in 2001 participated in

the �rst wave of the study when the children were approximately nine months old. The ECLS-B is one of

the few national U.S. studies that involve fathers through self-reporting driven by the importance of the

father�s presence in the child�s life.10 The survey includes separate questionnaires for only resident, only

non-resident biological, and both resident and non-resident biological fathers.

Since the focus of the study is to analyze the e¤ect of WIC on birth outcomes, only the �rst wave of

the survey is exploited. The focus is on infants from households which are income eligible for WIC, that

is, at or below 185% of the FPL. The sample is further restricted to children who are singletons without

any missing information on age.11

The principal sample has 4,350 nine-month old infants from WIC eligible families. I also study two

subsamples based on the race of the child and urban status of the household. The non-white WIC eligible

sample consists of 3,150 infants while the urban WIC eligible sample has 3,600 infants. The binary treat-

ment variable, WIC, takes a value of one if the mother reports receiving WIC bene�ts during pregnancy,

and zero otherwise. I focus on the relationship between WIC and binary health outcomes related to birth

weight and gestation age. Among the birth weight outcomes, I include an indicator for birth weight of at

least 1500 grams, an indicator for birth weight of at least 2500 grams, an indicator for normal birth weight

(birth weight between 2500 grams and 4000 grams), and another for birth weight of at most 4000 grams.12

For gestation age, I include an indicator each for near-term pregnancy (gestation age of at least 33 weeks)

10See: The ECLS-B 9-month User�s Manual, Chapters 1- 5, p. 64.
11380 observations have missing information on age and are dropped.
12More than 7% of the sample are clinically �macrosomic� (birth weight exceeding 4000 grams). Boulet et al.(2004) show

that macrosomia is related to fetal injury, perinatal asphyxia, and fetal death, as well as complications for the mother like

increasing the probability of caesarean delivery.
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and full term pregnancy (gestation age between 38 and 42 weeks). The information on birth weight and

gestation age come from the infant�s birth certi�cate. All the outcomes are de�ned such that an outcome

of one (as opposed to zero) is a good thing.

For the IV estimates following Lewbel (2010), I include the following child-speci�c parental and en-

vironmental covariates: child�s race (white, black, Asian, and Hispanic), a gender dummy, household

socioeconomic status (SES), mother�s age, father�s age, dummy variables for whether the mother has a

high school (HS) degree or less, corresponding indicator for father�s education, a marital status indicator

for whether the parents are married, region type (Northeast, Midwest, South, and West), and city type

(urban cluster, urban area, and rural). Additionally, higher order and interaction terms involving both

binary and continuous variables are included in the estimations.

Table A1 in Appendix A provides the summary statistics for the full sample. All analyses are performed

using survey weights. The last two columns report the di¤erences in means between the treated (prenatal

WIC recipients) and the untreated (income eligible non-participants) along with the p-values.

68.7% of the WIC eligible households report prenatal WIC receipt. In terms of the demographic and

socioeconomic characteristics, it is evident that children whose mothers report prenatal WIC receipt are

less likely to be white or Asian, and more likely to be black or Hispanic. They are from households with

lower SES and fewer family members. These children are more likely to have younger but unmarried

parents. The mothers are less likely to report inadequate care (consistent with WIC�s focus on nutritional

and health care education) and are more likely to be heavier themselves. They are also more likely to have

at most a HS degree; and the fathers are less likely to have completed HS. WIC participants are also more

likely to reside in less densely populated areas.

In terms of the birth outcomes, the children of prenatal WIC recipients have lower probabilities of

near-term and full term pregnancies, compared to those of eligible non-participating mothers. The average

birth weight is also lower for children of prenatal WIC participants compared to those of non-participants.

Consistent with the existing research on WIC and birth outcomes, there exists negative selection, at

least on observables, into WIC participation.

5 Methodology

For this analysis, I focus on children from WIC eligible families with income at or below 185% of the FPL.

My aim is to learn about the ATE of the eligible mother�s prenatal WIC receipt on birth outcomes of

children. The ATE captures the expected treatment e¤ect if an expectant mother was chosen at random

from the WIC eligible population. While there are treatment e¤ect parameters of potential interest, I focus
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on the ATE for two main reasons. First, Figlio et al. (2009) note that WIC serves half of all pregnant

women in the United States. In the ECLS-B data used in this study, 49% of households are income-eligible

for WIC and almost 69% of the eligible women report receiving WIC bene�ts during pregnancy. Second,

since I suspect that the treatment in question, self-reported prenatal WIC receipt, is measured with error,

the de�nition of the treated sample will be odd.

With binary outcomes, the ATE is expressed as

ATE(1; 0) = P [H(1) = 1jX 2 
]� P [H(0) = 1jX 2 
] (1)

where H(1) denotes a binary measure of health of a child if his or her mother received WIC prenatally,

and H(0) denotes the corresponding outcome if the child�s eligible mother did not. The probabilities of

these health outcomes are conditioned on observed covariates denoted by X 2 
 with values in the set 
:

In this approach, conditioning on covariates only helps to de�ne subpopulations of interest (Kreider et al.,

2011). For notational simplicity, X 2 
 is dropped in the following derivations.

To assess the e¤ect of prenatal WIC receipt by the mother on a child�s health outcome using observa-

tional data, two distinct identi�cation problems must be addressed. First, even if true WIC receipt were

observed for all eligible households, the potential outcome H(1) is a missing counterfactual for all children

whose WIC eligible mothers did not participate. By the Law of Total Probability, it is shown as

P [H(1) = 1] = P [H(1) = 1jW � = 1]P (W � = 1) + (2)

P [H(1) = 1jW � = 0]P (W � = 0)

where W � = 1 represents that the child�s mother truly received WIC bene�ts during her pregnancy and

W � = 0, otherwise. If true WIC receipt is observed, the sampling process identi�es P (W � = 1) and

P (W � = 0), the selection and censoring probabilities respectively, and the expected outcome conditional

on the outcome being observed P [H(1) = 1jW � = 1] : However, it fails to identify the average outcome

conditional on censoring, i.e., P [H(1) = 1jW � = 0]. Accordingly, both P [H(1) = 1] and P [H(0) = 1] are

not nonparametrically identi�ed.

The second identi�cation problem arises because true participation status may not be observed for

all respondents. The true W � is not observed; the data has only a self-reported indicator, W , where W

= 1 if the child�s mother reports being a prenatal WIC bene�ciary and zero otherwise. This is called the

ME or classi�cation error problem. The sampling process fails to provide any useful information on true

participation status, W �, without assumptions on the extent and type of ME. So, all the probabilities on

the right hand side of Equation (2) are unknown.

Following Kreider et al. (2011) to focus on the ME problem, let the latent variable Z� denote whether
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a report is accurate or not, where Z� = 1 if W � = W and Z� = 0 otherwise.13 Using Z�, Kreider and his

coauthors show that P [H(1) = 1] can be decomposed as follows:

P [H(1) = 1] = [P (H = 1;W = 1)� �+1 + �
�
1 ] + (3)

P [H = 1jW � = 0] [P (W = 0) + (�+1 + �
+
0 )� (�

�
1 + �

�
0 )]

where H is the actual health outcome, �+j = P (H = j;W = 1; Z� = 0) and ��j = P (H = j;W = 0; Z� = 0)

represent the proportion of false positive and false negative classi�cations of WIC bene�ciaries, respectively,

for children realizing health outcome j = 1; 0.

Looking at (3), all of the terms on the right hand side, except P (H = 1;W = 1) and P (W = 0) are

unobserved. P [H = 1jW � = 0] is not identi�ed due to both the selection and ME problems while the �

terms are not identi�ed due to ME.

Given these constraints on identifying the ATE of a binary treatment variable, the bounds on the ATE

are derived by combining various selection assumptions with two assumptions about the the nature and

extent of ME. I denote UB for upper bound and LB for lower bound of the ATE for each set of assumptions

considered. The reader is referred to the technical appendix, Appendix D, for more details.

5.1 Classi�cation Error Assumptions

Bitler et al. (2003, p. 1175) �nd that the demographic characteristics of WIC recipients in the SIPP and

CPS �track the WIC caseload well� so that the undercount problem is approximately random, at least

along observable characteristics. Accordingly, I �rst allow for arbitrary error rates. Then, I tighten the

bounds on the ATE by imposing an additional assumption of no false positive errors, i.e., very few women

falsely claim WIC receipt. This is true for other programs like food stamps as documented by Kreider

and his coauthors, and given that food stamp recipients are income eligible for WIC, this appears to be

a reasonable restriction. Moreover, Meyer et al. (2009) acknowledge the growing nature and direction of

this problem, and refer to it strictly as an under-reporting problem in lieu of ME. They also verify that

false positive reporting is not very high.14

Methodologically, I follow Gundersen and Kreider (2008) and impose the following assumptions on

classi�cation error:
13The formulae and their derivations come from an earlier version of Kreider et al. (2011).
14Only Jacknowitz and Tiehen (2010) report a slightly higher prenatal participation rate in the ECLS-B compared to the

USDA data for 2001. However, their sample de�nition is based on prenatal Medicaid receipt by the mother while my sample

is based on the WIC income eligibility criterion like Figlio et al.�s (2009) since I suspect non-trivial ME in reports of Medicaid

receipt (Kreider and Hill, 2009).
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(i) Upper Bound Error Rate Assumption: P (Z� = 0) � Q

(ii) No False Positives Assumption: If W = 1, then W � = 1.

Here, Q is an upper bound on the degree of data corruption. It takes a value of zero if the researcher

is absolutely certain about the accuracy of WIC participation reported by all eligible women. This is the

case for existing WIC evaluations. Assumption (ii) states that if the respondents claim WIC receipt, then

these reports are presumed to be accurate.

To check the sensitivity of inferences to di¤erent assumptions on classi�cation errors, I compare two

scenarios: the �arbitrary errors� case imposes only assumption (i) and the �no false positives� model

imposes both assumptions (i) and (ii). The above assumptions on classi�cation errors impose reasonable

restrictions on the unknown false reporting rates ��1 , �
�
0 , �

+
1 , and �

+
0 . Assumption (i) implies

0 � ��1 � minfQ;P (H = 1;W = 0)g � �UB�1 , 0 � ��0 � minfQ;P (H = 0;W = 0)g � �UB�0 ,

0 � �+1 � minfQ;P (H = 1;W = 1)g � �UB+1 , 0 � �+0 � minfQ;P (H = 0;W = 1)g � �UB+0 ,

and

�+1 + �
�
1 + �

+
0 + �

�
0 � Q. (4)

Assumption (ii) implies

�+1 = �
+
0 = 0: (5)

For both the �arbitrary errors�and the �no false positives errors�models, Q takes values of 0 (no ME),

0.01, 0.02, 0.05, and 0.10. This range is reasonable since Bitler et al. (2003) document under-reporting in

the range of 25% to 30% in the SIPP and CPS. So, a maximum Q of 10%, at worst, depicts a less severe

situation compared to the existing evidence. Additionally, I assess the degree of ME in the ECLS-B data

using the maximum likelihood estimation (MLE) method proposed in Hausman et al. (1998).

Hausman et al.�s (1998) parametric model of asymmetric misclassi�cation applies to the case where

the binary dependent variable is measured with error. In the present context, the self-reported indicator

of prenatal WIC participation, W , is such a mismeasured variable.

Assuming F is the normal CDF, the probit probabilities of true WIC receipt are given by

Pr [W �
i = 1jXi] = F

�
X

0
i

�

Pr [W �
i = 0jXi] = 1� Pr [W �

i = 1jXi]

where Xi represents the covariates.

12



With misclassi�cation, however, the observed Wi di¤ers from the true W �
i . Then the misclassi�cation

probabilities are

�0 = Pr[Wi = 1jW �
i = 0]

�1 = Pr[Wi = 0jW �
i = 1]:

�0 represents the proportion of false positive classi�cations; �1 represents the fraction of false negative

classi�cations. In this model of misclassi�cation, these probabilities depend on W �
i but are independent of

the Xi: Accounting for misclassi�cation, the probabilities of observed Wi are

Pr [Wi = 1jXi] = Pr[Wi = 1jW �
i = 0]Pr(W

�
i = 0jXi) + Pr[Wi = 1jW �

i = 1]Pr(W
�
i = 1jXi)

= �0 + (1� �0 � �1)F (X
0
i
)

Pr [Wi = 0jXi] = 1� Pr[Wi = 1jXi]

= 1� �0 � (1� �0 � �1)F (X
0
i
):

The parameters of interest (
; �0; �1) are estimated by MLE by maximizing the log likelihood function

lnL(
; �0; �1) = n�1
X
i

fWi ln[Pr (Wi = 1jXi)] + (1�Wi) ln[Pr (Wi = 0jXi)]g

= n�1
X
i

n
Wi ln[�0 + (1� �0 � �1)F (X

0
i
)] + (1�Wi) ln[1� �0 � (1� �0 � �1)F (X

0
i
)]

o
over (
; �0; �1): The parameters (
; �0; �1) are identi�ed by the non-linearity of the normal distribution in

addition to a monotonicity assumption: �0 + �1 < 1:

The estimates of �0 and �1 are 0.05 and 0.19, respectively in the ECLS-B data. I also reject the null

hypothesis that �0 and �1 are jointly equal to zero at the p < 0.01 con�dence level. Since Q = 0:10 is still

less than the sum of the estimated values of �0 and �1 in this data, allowing for a maximum of Q = 0:10

seems additionally justi�able.15

5.2 Exogenous Selection

5.2.1 No Misclassi�cation Errors

While the WIC literature does not believe the existence of exogenous selection into WIC, it is a necessary

starting point before the assumption is relaxed to admit certain non-random selection assumptions. The

assumption of exogenous selection is expressed as

P [H(1) = 1;W �] = P [H(1) = 1]

15The full set of results is available upon request.
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which implies

P [H(1) = 1;W � = 1] = P [H(1) = 1;W � = 0] = P [H(1) = 1]:

Accordingly, using (2) implies

P [H(1) = 1] = P [H = 1jW � = 1]

P [H(0) = 1] = P [H = 1jW � = 0] :

So,

ATE = P [H(1) = 1]� P [H(0) = 1]

= P [H = 1jW � = 1]� P [H = 1jW � = 0] : (6)

5.2.2 Allowing for Misclassi�cation Errors

Allowing for misclassi�cation errors, the ATE cannot be identi�ed even under the assumption of exogenous

selection as W � is not observed in (6). To illustrate:

P [H(1) = 1] = P [H = 1jW � = 1]

can be decomposed as

P [H(1) = 1] =
[P (H = 1;W = 1) + ��1 � �

+
1 ]

[P (W = 1) + (��1 + �
�
0 � �

+
1 � �

+
0 )]

(7)

where the sampling process identi�es only P (H = 1;W = 1) and P (W = 1). The term, (��1 +�
�
0 ��

+
1 ��

+
0 ),

in the denominator, denotes the unobserved excess of false negatives over false positives in the entire eligible

population; the term, (��1 � �
+
1 ), in the numerator, re�ects the excess of false negatives relative to the false

positives among those children with H = 1.

Arbitrary Errors Model I assume P (Z� = 0) � Q. Now, ATE is de�ned as:

ATE = P [H(1) = 1]� P [H(0) = 1]

with the corresponding bounds given by

UBATE = UBP [H(1)=1] � LBP [H(0)=1]

LBATE = LBP [H(1)=1] � UBP [H(0)=1]:

With arbitrary errors, the bounds beome

UBATE = sup
a2(0;min[Q;P (H=1; W=0)])

�
P [H = 1;W = 1] + a

P (W = 1) + 2a�Q � P [H = 1;W = 0]� a
P (W = 0)� 2a+Q

�
LBATE = inf

b2(0;min[Q;P (H=1; W=1)])

�
P [H = 1;W = 1]� b
P (W = 1)� 2b+Q � P [H = 1;W = 0] + b

P (W = 0) + 2b�Q

�
:

The reader is referred to Propositions 1 and A.1 in Kreider and Pepper (2007) for the proof and derivation.
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No False Positives Errors Model Equation (7) implies

P [H = 1;W = 1]

P (W = 1) + �UB�0

� P [H(1) = 1] � P [H = 1;W = 1] + �UB�1

P (W = 1) + �UB�1

(8)

and
P [H = 1;W = 0]� �UB�1

P (W = 0)� �UB�1

� P [H(0) = 1] � P [H = 1;W = 0]

P (W = 0)� �UB�0

: (9)

Accordingly, the bounds on the ATE become

UBATE =
P [H = 1;W = 1] + �UB�1

P (W = 1) + �UB�1

� P [H = 1;W = 0]� �UB�1

P (W = 0)� �UB�1

LBATE =
P [H = 1;W = 1]

P (W = 1) + �UB�0

� P [H = 1;W = 0]

P (W = 0)� �UB�0

: (10)

For derivations, see Appendix D.

5.3 No Selection Assumption

The previous bounds on the ATE assume exogenous selection which is unlikely given the WIC literature

and the covariates available in the ECLS-B data. In this section, I consider the e¤ect of prenatal WIC on

infant health without assuming any particular selection mechanism following Manski (1995) and Pepper

(2000).

5.3.1 No Misclassi�cation Errors

Without ME the true W � is observed. Additionally, with no assumption on selection, the only available

information are that the probabilities P [H(1) = 1jW � = 0] and P [H(0) = 1jW � = 1] lie between [0; 1].

Accordingly, the bounds are:

P [H = 1;W � = 1] � P [H(1) = 1] � P [H = 1;W � = 1] + P (W � = 0) (11)

and

P [H = 1;W � = 0] � P [H(0) = 1] � P (W � = 1) + P [H = 1;W � = 0] : (12)

For derivations, see Appendix D.

The width of the bound on P [H(1) = 1] is the censoring probability, P (W � = 0); while the inclusion

probability, P (W � = 1); is the width of the bound on P [H(0) = 1]. Since

ATE = P [H(1) = 1]� P [H(0) = 1] ,

this means that although the bounds on ATE are sharp, the width always equals 1 (see Manski, 1995).

So, without identifying restrictions on the selection mechanism, it is impossible to sign the ATE. If true
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WIC participation is observed the data is su¢ cient to identify the e¤ect of WIC participation on birth

outcomes.

5.3.2 Allowing for Misclassi�cation Errors

Allowing for ME, the bounds on P [H(1) = 1] and P [H(0) = 1] are:

P [H = 1;W = 1]� �+1 + �
�
1 � P [H(1) = 1] � P [H = 1;W = 1] + P (W = 0) + �+0 � �

�
0 (13)

P [H = 1;W = 0] + �+1 � �
�
1 � P [H(0) = 1] � P [H = 1;W = 0] + P (W = 1)� �+0 + �

�
0 : (14)

Arbitrary Errors Model Imposing Assumption (i) on ME the bounds on ATE are tightened to

UBATE = P [H = 1;W = 1] + P (W = 0) + minfQ; �UB+0 + �UB�1 g � P [H = 1;W = 0]

LBATE = P [H = 1;W = 1]�minfQ; �UB+1 + �UB�0 g � P [H = 1;W = 0]� P (W = 1): (15)

For derivations, refer to Appendix D.

No False Positives Errors Model Imposing Assumptions (i) and (ii) on ME the bounds on ATE are

further tightened to

UBATE = P [H = 1;W = 1] + P (W = 0) + �UB�1 � P [H = 1;W = 0]

LBATE = P [H = 1;W = 1]� �UB�0 � P [H = 1;W = 0]� P (W = 1): (16)

For derivations, refer to Appendix D.

5.4 Monotonicity Assumptions

To further tighten the estimated bounds on ATE, I exploit the identifying power of three monotonicity

assumptions which impose disparate restrictions on the relationships between WIC participation, birth

outcomes, and the available data.

5.4.1 Monotone Treatment Selection

The Monotone Treatment Selection (MTS) assumption de�nes the selection mechanism through which

mothers become WIC participants (Manski and Pepper, 2000). The literature on prenatal maternal par-

ticipation in WIC and birth outcomes clearly indicates that among the eligible, those women who choose to

participate are more likely to have unfavorable demographic, socioeconomic, and health characteristics to

begin with (e.g., Bitler and Currie, 2005). That is, there exists negative selection, at least on observables,
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into WIC. So, the MTS assumption simply allows for the possibility that infants whose mothers chose to

participate in WIC prenatally have a lower probability of a good health outcome on average compared to

non-participants. Following Kreider et al. (2011), this assumption translates into:

P [H(1) = 1jW � = 0] � P [H(1) = 1jW � = 1] (17)

P [H(0) = 1jW � = 0] � P [H(0) = 1jW � = 1]: (18)

Accordingly,

UBATE = P [H = 1;W = 1] + P (W = 0) + �UB+0 �
n
P [H = 1;W = 0]� �UB�1

o
LBATE =

P [H = 1;W = 1]� �UB+1

P (W = 1)� �UB+1 + �UB�0

�
(
P [H = 1;W = 0] + �UB+1

P (W = 0) + �UB+1 � �UB�0

)
(19)

where �UB+1 = �UB�0 = �UB�1 = �UB+0 = 0 in the absence of ME. See Appendix D for derivations.

Arbitrary Errors Model Imposing Assumption (i) on ME the bounds are tightened such that

UBATE = UBATE under the No Selection Assumption Model with Arbitrary Errors

LBATE = LBATE under the Exogenous Model with Arbitrary Errors.

So, to get sharp bounds on ATE, the UBATE under the No Selection Assumption model is used while the

LBATE comes from the exogenous case. See Appendix D for derivations.

No False Positives Errors Model Imposing Assumptions (i) and (ii) on ME the bounds are further

tightened such that

UBATE = UBATE under the No Selection Assumption Model and the No False Positive Errors Model

LBATE = LBATE under the Exogenous Model and the No False Positive Errors Model.

Again, to get sharp bounds on ATE, the UBATE under the No Selection Assumption model is used while

the LBATE comes from the exogenous case. See Appendix D for derivations.

5.4.2 Monotone Instrumental Variable

To further tighten the bounds, I turn to the Monotone Instrumental Variable (MIV) assumption which

states that the latent probability of a good health outcome, P [H(t) = 1], t = 0; 1, varies monotonically with

observed covariates (Manski and Pepper, 2000). I use household SES as the MIV. Chen et al. (2002) report

that child health improves monotonically with SES. The food stamp literature also shows that even among
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low-income eligible households, those with higher incomes demonstrate a greater probability of better

health outcomes in association with food stamps (e.g., Kreider et al., 2011). Since food stamp recipients are

automatically eligible for WIC, an equivalent relationship between WIC and SES is additionally justi�able.

As in Kreider et al. (2011), the MIV assumption is formalized as follows:

Let � be the MIV such that for u1 < u < u2:

P [H (1) = 1j� = u2] � P [H(1) = 1j� = u] � P [H(1) = 1j� = u1]

P [H (0) = 1j� = u2] � P [H(0) = 1j� = u] � P [H(0) = 1j� = u1].

To bound these latent probabilities, I combine the MIV assumption with the MTS assumption discussed

above. If LB(u) and UB(u) are the known lower and upper bounds evaluated at v = u under the MTS

assumption, then the MIV assumption implies (Proposition 1 in Manski and Pepper, 2000):

sup LB
u1�u

(u1) � P [H(t) = 1j� = u] � inf UB
u�u2

(u2); t = 0; 1.

To calculate these bounds in practice, the sample is divided into four SES groups.16 Then, I take the

weighted average of the estimators of the MTS LB and UB across the four SES groups to get the joint

MTS-MIV bounds on the rates of good health. Such an MIV estimator is biased in �nite samples but

consistent (Manski and Pepper, 2000). In this light, I use Kreider and Pepper�s (2007) nonparametric

�nite sample bias corrected MIV estimator. See Appendix D for details.

5.4.3 Monotone Treatment Response

In this section, I discuss the Monotone Treatment Response (MTR) assumption which states that WIC

participation cannot worsen birth outcomes (Manski, 1997). The WIC program exists to assist and guide

low-income women to improve their prenatal and neonatal nutrition and health. The focus on pregnant

and nursing women and their very young children is to ensure that a healthy mother will enhance the

likelihood of a healthy child. The MTR assumptions states that

H(1) � H(0).

To be sure, the MTS assumption states that participants are comparatively more disadvantaged on

average than non-participants, so they have worse outcomes on average independent of WIC. The MTR

assumption, on the other hand, states that any woman in the population will only participate in WIC if it

does not harm her or her child.
16Due to the small sample size I run into cell size issues with additional SES groups.
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5.5 Instrumental Variable Estimation

The preceding nonparametric bounding approach attempts to partially identify the causal e¤ect of prenatal

WIC participation under the explicit reasonable assumptions speci�ed. To complement the bounds analysis,

identifying point estimates with an IV strategy would be ideal. Unfortunately, owing to ME in reports of

prenatal WIC receipt, typical exclusion restrictions are suspect. Nonclassical ME implies that true WIC

participation is negatively correlated with the error, so any valid IV is also likely to be correlated with the

ME as well. So, this section presents the alternative IV strategy proposed in Lewbel (2010) that works

under certain assumptions. The identi�cation strategy proposed in Lewbel (2010) extends earlier work by

Lewbel (1997) and Ebbes et al. (2009).

The outcome model is given by:

yi = Xi� + �Wi + "i

and the �rst stage equation is:

Wi = Xi�1 + �i

where yi denotes binary health outcome of the ith child; Wi is a binary variable that takes a value of one

if the ith child�s mother reports prenatal WIC receipt, and zero otherwise; Xi is the set of covariates. �i

represents the error term in the �rst-stage equation, assumed to be correlated with "i. The identi�cation

problem stems from the fact that Wi is only a self-reported WIC receipt indicator, measured with error,

and lacks an exclusion restriction. Lewbel�s (2010) strategy shows that the model is identi�ed if �i is

heteroskedastic and one can �nd at least a subset of the elements of Xi which are correlated with the error

variances but not with the error covariances. Here, Wi, is binary in nature which guarantees that �i is

heteroskedastic.

Formally, I choose zi � Xi such that

E
�
z0�2i

�
6= 0 (14)

and

E
�
z0"�i

�
= 0. (15)

If these assumptions are satis�ed, then the valid IV for Wi is ezi � �zi � _
z
�
�i.

To get the IV estimates, I begin by estimating the �rst stage equation by OLS to get consistent estimates

of �i. Then, to get the subset zi, I conduct the Breusch-Pagan test for heteroskedasticity and include those

that are signi�cantly related to the estimates of �i. Finally, I generate the instruments ezi, and conduct an
ordinary two-stage least squares estimation to get the IV estimates.
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6 Results

The �rst part of this section presents the nonparametric bounds on the ATE of prenatal WIC participation

on di¤erent binary health outcomes. The second part discusses the IV estimates. Since the literature and

the ECLS-B data show that prenatal WIC participants are disproportionately non-white, I repeat the

above analyses on this subsample and report the results in Appendix B. Also, almost 80% of the WIC

eligible pool in the ECLS-B data reside in urban areas. This is an interesting subsample since the proximity

to grocery stores and local WIC agencies can potentially worsen social stigma of being recognized as a

�welfare�recipient. The results for this subsample are reported in Appendix C.

6.1 Bounds on ATE

The �rst section focuses on birth weight outcomes. The second discusses the outcomes related to gestation

age. It is important to note that these estimated bounds are based on sample probabilities, instead of the

population probabilities used to describe this analytical approach in the Methodology section above. To

address the additional uncertainty related to sampling variability, I construct the Imbens-Manski (2004)

con�dence intervals that cover the true value of the ATE with 95% probability (see Kreider et al., 2011).17

6.1.1 Birth Weight Outcomes

First, I consider the probability of birth weight of at least 1500 grams. Panel A of Figure 1 compares the

sharp bounds on the ATE for the case of exogenous selection to that under no assumption on selection as

Q varies from 0 to 0.10. Panel B (Panel C) of Figure 1 shows how the bounds are gradually tightened with

the monotonicity assumptions on selection under arbitrary errors (no false positive errors) assumption.

Table 1 shows the corresponding ATE bounds for these values of Q.

Panel A in Figure 1 shows that the di¤erence in the sample means between participants and non-

participants reported in Table A1 is the consistent estimate of the ATE(1; 0) assuming exogenous selection

if Q = 0, i.e., 0.003. However, when Q > 0, I can no longer sign the ATE, even under the assumption

of no false positive reporting and exogenous selection. In sharp contrast, without any assumption on the

selection mechanism, the ATE of prenatal WIC participation cannot be signed even in the absence of ME.

To narrow the bounds, I apply the assumptions of MTS, joint MTS-MIV, and joint MTS-MTR along

with the arbitrary errors model in Panel B. Allowing for negative selection but no misreporting (see

column 5, Table 1), the ATE 2 [0:003; 0:684] suggesting an ameliorating e¤ect of WIC participation on
17These con�dence intervals are still being computed, but will only make the bounds wider and not change the qualitative

conclusions.
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the likelihood of very low birth weight. The bounds are further tightened to ATE 2 [0:005; 0:683] under

the joint MTS-MIV assumption for Q = 0 (see column 7, Table 1). This suggests that WIC increases the

probability of birth weight of at least 1500 grams by 0.5 to 68.3 %. However, even if only one percent of

eligible women misreport (Q = 0:01) I cannot conclude that the ATE of WIC is positive or negative.

In comparison to the case of negative selection with Q � 0:01, the bounds on the ATE under the

MTS-MIV assumption are narrower. Although the evidence continues to be inconclusive, I can rule out

a negative e¤ect of WIC of more than 1.8 % on very low birth weight when 10% of women misreport

participation (Q = 0:10). The joint assumption of MTS-MTR only improves the lower bound of the ATE

to 0 for Q > 0 suggesting a bene�cial e¤ect of WIC (see Figure 1 and column 9, Table 1).

Next, I turn to the more restrictive assumption of no false positive errors along with the monotonicity

assumptions to attempt to sign the causal e¤ect of WIC (see Panel C, Figure 1 and columns 6 - 10, Table

1). Although the bounds on the ATE are tighter as expected under stricter assumptions, the results remain

the same in spirit: the causal e¤ect of WIC cannot be signed for a meager degree of ME (Q = 0:01). Now,

I can rule out a negative e¤ect of WIC of more than 1.6% on the likelihood of birth weight of at least 1500

grams.

That is, under the reasonable assumptions about ME and selection mechanism considered here, it takes

only one percent of ME to render the evidence concerning the causal e¤ect of participation inconclusive.

This is a striking �nding since the existing literature documents WIC misreporting rate of at least 25%.

Moreover, according to the Hausman et al. (1998) model estimated in Section 5.1 above, the rate of

misclassi�cation in the ECLS-B is roughly 24%. This evidence clearly calls for greater attention to the

problem of ME in survey data.

Second, I analyze the probability of birth weight of at least 2500 grams. Figure 2 and Table 2 present the

results. Accounting for negative selection (MTS alone) without ME, the ATE 2 [0:001; 0:660] indicating

that WIC improves the prevalence of birth weight exceeding 2500 grams. This positive e¤ect narrows down

to [0:007; 0:661] under the joint MTS-MIV assumption with no ME (see Panels B and C, Figure 2 and

columns 5 - 8, Table 2). That is, WIC reduces the likelihood of low birth weight by 0.7 to 66.1 % in the

absence of ME.

Unfortunately, the ATE cannot be signed as soon as Q > 0 regardless of the selection and ME

assumptions considered here. Nevertheless, the bounds suggest that the maximum deleterious e¤ect of WIC

on the likelihood of low birth weight is 10.9 points when 10% of eligible women misreport participation.

Third, I focus on the probability of normal birth weight. Figure 3 and Table 3 present the results for

this outcome. The ATE 2 [0:019; 0:639] when Q = 0 under the assumption of negative selection (MTS

alone). This positive e¤ect narrows down to [0:026; 0:639] under the joint MTS-MIV assumptions and no
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ME (see Panels B and C, Figure 3 and columns 5 - 8, Table 3). That is, WIC participation increases the

prevalence of normal birth weight by 2.6 to 63.9 points.

Again, the ATE cannot be signed if at least one percent of WIC women misreport. However, the

bounds under the joint MTS-MIV assumption rule out any detrimental e¤ect of WIC exceeding 21 points

when 10% of women misreport. Of course, more ME will only worsen the situation.

Finally, I turn to the probability of birth weight of at most 4000 grams. The estimated bounds on

the ATE are reported in Table 4 and Figure 4. The results are qualitatively the same as the above three

indicators of birth weight. The bounds on ATE are gradually tightened from [0:018; 0:667] under MTS

to [0:031; 0:665] under the joint MTS-MIV assumption only when Q = 0: As before, even if as low as

one percent of eligible women misreport their prenatal WIC participation, the sign of the causal e¤ect is

indeterminate.

The results for the non-white and urban subsamples are presented in Appendices B and C, respectively.

Compared to the full sample, the positive e¤ects of WIC under the joint MTS-MIV assumption without

ME are larger for the probabilities of very low and low birth weight in the non-white sample. That is, the

estimated LB on the ATE exceed the corresponding LB in the full sample. This conforms to the existing

evidence of WIC bene�ts being larger for the more disadvantaged mothers. In the urban sample, the LB

on the ATE under the joint MTS-MIV assumption with no ME exceed the corresponding LB in the full

sample for the probabilities of at least 1500 grams, at least 2500 grams, and at most 4000 grams. This is

possibly because the bene�ts of living close to grocery stores accepting WIC vouchers, local WIC agencies,

and neighbors who are more likely to be WIC bene�ciaries themselves outweigh or even dampen the feeling

of social stigma.

With ME in these subsamples, the results are qualitatively similar to the full sample. The only exception

is the probability of birth weight of at most 4000 grams in the urban sample. For this outcome, the ATE

can be signed to be strictly positive under the joint MTS-MIV assumption if up to one percent of eligible

women misreport (see Panels B and C, Figure C4 and columns 5 - 8, Table C4). However, if two percent of

women misreport, strong assumptions are required to sign the causal e¤ect and the literature is overlooking

this serious problem of ME.

In summary, I �nd a positive association between birth weight and prenatal WIC participation, only

when I ignore ME. This is consistent with the existing literature. In fact, accounting for ME, the results

show that it is di¢ cult to sign the ATE under several assumptions about selection and ME. However, it is

crucial to account for ME in evaluating WIC when the literature shows that the under-reporting problem

is the most severe for WIC relative to other transfer programs.
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6.1.2 Gestation Age

First, I consider the probability of near-term pregnancy (gestation age of at least 33 weeks). The results

are reported in Figure 5 and Table 5. Panel A of Figure 5 shows that the bounds on the ATE always

include zero without any assumption on the selection mechanism even when Q = 0. For the baseline case of

exogenous selection, the di¤erence in the sample means between participants and non-participants reported

in Table A1 is the consistent estimate of the ATE(1; 0) if Q = 0, i.e., -0.004. When Q > 0, prenatal WIC�s

e¤ect on the likelihood of near-term pregnancy can only be partially identi�ed. For instance, when only one

or two percent of households misreport WIC, the ATE lies in the range [�0:050; 0:040] and [�0:098; 0:083].

However, under the additional assumption of no false positive reports, the ATE can be signed as strictly

negative, lying in the range [�0:047;�0:030] and [�0:047;�0:001], respectively (see Panel A, Figure 5, and

columns 1 and 2, Table 5).

This suggests that the e¤ect of prenatal WIC is negative on the probability of near-term pregnancy,

under exogenous selection and allowing up to two percent of eligible women to misreport their participation.

This is a surprising result even under the simplest assumption of exogeneity. If more than two percent of

women misreport, I cannot sign ATE of prenatal WIC receipt under these assumptions.

Next, allowing for negative selection into WIC I turn to the MTS case in Panels B and C of Figure 5.

Table 5 shows that the ATE 2 [�0:004; 0:673] even when Q = 0. The bounds suggest a slight deleterious

e¤ect of 0.4 points. However, the bounds only get wider when more women misreport.

Once again, perhaps the most interesting result emerges when the MTS assumption is combined with

the MIV assumption. Columns 7 and 8 of Table 5 show that when there is no ME, the ATE 2 [0:001; 0:673].

This joint assumption clearly improves upon the solitary assumption of MTS when Q = 0 by narrowing the

bounds to [0:001; 0:673] from [�0:004; 0:673]: Moreover, the joint MTS-MIV bounds indicate that prenatal

WIC receipt increases the probability of near-term pregnancy, when there is no ME. However, as soon as

even one percent of eligible women misreport their WIC participation, the bounds include negative values

and so the ATE can no longer be signed.

Second, I analyze the probability of a full term pregnancy. The results are qualitatively similar to the

probability of near-term pregnancy. Table 6 and Figure 6 present the results. Under exogenous selection,

the ATE is point identi�ed when Q = 0; it suggests a negative association between prenatal WIC receipt

and the likelihood of a full term pregnancy without any misreporting. When even one percent of the eligible

women misreport, ATE 2 [�0:057;�0:010] with the additional assumption of no false positive errors. Any

greater rate of misreporting prohibits signing the ATE (see columns 1 and 2, Table 6 and Panel A, Figure

6). Without any assumption on the selection mechanism, I do not �nd any conclusive relationship between
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prenatal WIC participation and the probability of a full term pregnancy.

The MTS assumption alone without any ME, i.e., with Q = 0 (see columns 5 and 6, Table 6 and Panels

B and C, Figure 6) is not strong enough to conclude that participating in WIC leads to a higher or lower

probability of a full term pregnancy. However, like before, this assumption increases the lower bound of the

ATE compared to that under the worst case scenario for all values of Q. The joint MTS-MTR assumption

(see columns 9 and 10, Table 6) improves the lower bound even more to zero.

Again, perhaps the most interesting result pertains to the joint MTS-MIV assumption. The results are

reported in columns 7 and 8 of Table 6, and Panels B and C of Figure 6. If WIC receipt is not misreported

(Q = 0), the ATE 2 [0:001; 0:583] suggesting an improvement in gestation age. However, as in the previous

cases, for su¢ ciently small WIC reporting error (Q � 0:01), I cannot draw any meaningful conclusion

regarding the relationship between WIC participation and the probability of a full term pregnancy.

The results for the non-white and urban subsamples are qualitatively similar to the full sample. The

only di¤erence is in terms of the probability of full term pregnancy. While the ATE can be signed to

be strictly positive under the joint MTS-MIV assumption without ME (Q = 0) in the full sample; the

bounds on the ATE for this outcome always include zero in both the subsamples. Also, I do not �nd any

conclusive evidence on the e¤ect of WIC on the probability of near-term pregnancy in the urban sample,

even under the joint MTS-MIV assumption without ME.

In summary, accounting for negative selection into and misreporting of prenatal WIC participation, I

am unable to sign the ATE for gestation age outcomes for as low a degree of ME as one percent. The

tightest bounds on ATE are attained under the joint assumption of MIV and MTS in the absence of ME.

These bounds show that prenatal WIC participation is bene�cial for gestation age for both de�nitions in

the full sample, unlike Figlio and his colleagues (2009) who �nd no signi�cant e¤ect of WIC on gestation

age.

The key result using this nonparametric bounding approach is that identi�cation of ATE deteriorates

with ME rapidly, even under the no false positives assumption. In fact, if even one percent of eligible

women misreport prenatal WIC participation, there is no conclusive evidence on the causal e¤ect of WIC

on a range of birth outcomes. I, therefore, conclude this section with a negative message since there exists

ample evidence in the welfare program evaluation literature that misreporting is the most severe in WIC

compared to the other programs.

6.2 Instrumental Variables

To learn more about the causal e¤ect of WIC participation, I report IV estimates following the strategy in

Lewbel (2010) for three model speci�cations and the six binary health outcomes. The set of covariates, Xi
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includes mother�s age, father�s age, an indicator for married parents, an indicator for whether the mother

has a high school (HS) degree or less, a corresponding indicator for the father, an indicator for whether

the child is male, an indicator for whether the child is Black or Hispanic, an indicator for living in a rural

area, three regional dummies, and four SES quintile dummies.

Speci�cation (1) includes Xi as is. Speci�cation (2) includes squared age of mother, an interaction term

between the mother�s age and whether she has a HS degree or less, an interaction term between whether

the child is black or Hispanic and whether the mother has at most a HS degree, and an indicator of whether

the child is black or Hispanic with married parents. Speci�cation (3) augments Speci�cation (2) with the

cubed age of mother and an interaction term between squared mother�s age and whether the mother has

at most a HS degree. In the non-white sample, the speci�cations do not include the race indicator or any

of its interactions; the urban sample does not include the rural indicator.

The subset of Xi, zi includes mother�s age and four indicators of SES quintiles in all speci�cations and

samples. These were chosen based on the smallest p-values from the Breusch-Pagan test for heteroskedas-

ticity. The results are reported in Tables 7, B7, and C7. Before interpreting the point estimates of WIC

identi�ed by this strategy, it is important to note that this strategy seems to work well as indicated by

the overidenti�cation and underidenti�cation test results reported in the tables for the respective samples.

Also, there is some evidence throughout con�rming that WIC is indeed endogenous.

It is also important to note that the IV estimates in this section may not be directly compared to the

estimated bounds on the ATE discussed in the previous section. This is because under heterogeneous

treatment e¤ects, IV estimates the local average treatment e¤ect or the LATE as opposed to the ATE

(Imbens and Angrist, 1994). However, under the assumption of a constant treatment e¤ect, IV estimates

the same parameter. Similarly, a direct comparison with existing traditional IV estimates of WIC may

be misleading as well. For example, Figlio et al. (2009) focus on a homogeneous sample of prenatal WIC

recipients in Florida who have at least one older child enrolled in the NSLP. The authors instrument for

WIC participation using changes in the requirements regarding income documentation to prove eligibility.

As a result, the set of compliers �those whose treatment status is determined by the instrument �most

likely di¤ers from the set of compliers analyzed using the procedure here (which, admittedly, is di¢ cult to

conceptualize).

Turning to the results, I start with the probability of birth weight of at least 1500 grams in Panel I of

Table 7. The IV estimate is larger and statistically signi�cant at a higher (one percent) level compared to

the OLS estimate. This indicates a bene�cial causal e¤ect of prenatal WIC receipt on birth weight despite

negative selection. Moreover, the estimate of 0.005 (across all the speci�cations) lies in the estimated

bound on the ATE, [0.005, 0.683] under the joint assumption of MIV and MTS ignoring ME. With ME
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the bounds on the ATE include zero as well as the IV estimate.

A similar result holds for the probability of birth weight of at least 2500 grams (Panel II, Table 7),

although the estimates are imprecise. The IV estimates of 0.009 or 0.010 are larger than the OLS estimates

of prenatal WIC participation, and lie in the estimated bounds on ATE, [0.007, 0.661] under MTS-MIV

with no ME. This suggests a bene�cial e¤ect of WIC on yet another measure of birth weight. The bounds

on the ATE accounting for ME also include the IV estimate for all the speci�cations.

In Panel III (Table 7) for the probability of normal birth weight, the IV estimates of 0.030 or 0.031

are larger than their OLS counterparts for all the speci�cations, are statistically signi�cant at the 10%

level, and lie in the estimated bounds on the ATE, [0.026, 0.639] under the joint assumption of MIV and

MTS without ME. The wider bounds on the ATE for non-zero ME include the IV estimates for all the

speci�cations. This suggests that WIC has a bene�cial causal e¤ect on the prevalence of normal birth

weight.

Although the IV estimates of WIC participation on the probability of birth weight of at most 4000 grams

do not lie in the estimated bounds, and are statistically insigni�cant, they still suggest an ameliorating

e¤ect of WIC participation. Also, with ME the bounds on the ATE include zero as well as the IV estimate.

Despite the caveat noted above concerning the proper interpretation of the IV estimates here and in

the prior literature, the results here suggest that WIC participation has a bene�cial causal e¤ect on birth

weight by compressing the birth weight distribution, consistent with Figlio et al. (2009). While WIC

receipt reduces the likelihood of very low and low birth weight, it also reduces the probability of birth

weight exceeding 4000 grams.

Turning to gestation age (Panels V and VI, Table 7), the probability of near-term pregnancy con�rms

negative selection into WIC by virtue of the IV estimates being larger than the OLS estimates. These are,

however, imprecisely estimated. The nonparametric bounds on the ATE under MIV and MTS with ME

include the values of the IV estimates.

For the probability of full term pregnancy, the negative IV estimates of prenatal WIC participation do

not lie in the estimated bounds when there is no ME. However, when at least two percent of the eligible

women misreport participation, the bounds on the ATE include zero as well as the IV estimates. In sum,

there is less evidence of a bene�cial e¤ect of WIC on gestation age echoing Figlio et el.�s (2009) �nding.

The results for both the subsamples are qualitatively similar to the full sample. The only exception is

that the IV estimates of prenatal WIC participation are positive (although imprecise) for the probability

of near-term pregnancy in both the subsamples unlike the full sample. This is at least consistent with the

notion that the largest WIC bene�ts pertain to the more disadvantaged women and also to those in urban

areas with easier access to WIC.
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7 Conclusion

The existing evaluations of the WIC program are dominated by empirical strategies focussed on isolating

the causal e¤ect by satisfactorily addressing the issue of non-random selection only. Though far from

conclusive, the evidence is broadly positive. A distinct identi�cation problem that also clouds the causal

interpretation - misreporting prenatal WIC participation - is not accounted for. In this paper, I revisit

the impact of prenatal WIC participation on birth outcomes by addressing both these problems in a

single partial identi�cation framework proposed in Kreider et al. (2011). This nonparametric approach

is especially suitable for this analysis since there remains considerable doubt about the existing estimates

from conventional identi�cation approaches using myriad data sets and empirical methods. I also provide

point estimates of the causal e¤ect (consistent with the estimated bounds on the ATE for all but one

outcome) using the IV strategy proposed in Lewbel (2010) that accounts for both ME and endogeneity

under certain assumptions.

Using data from the ECLS-B, I present and explain the various assumptions on the ME and selection

problems that help derive sharp bounds on the ATE of WIC on birth outcomes. In the presence of both

misreporting of and negative selection into WIC, the sampling process fails to point identify the ATE. So,

I impose several weak assumptions on both selection and ME processes to bound the causal impact of

prenatal participation in WIC. My basic conclusion is that even if only one percent of the eligible women

misreport their prenatal participation in WIC, it is not possible to sign the ATE given the selection and

ME assumptions imposed.

With no ME and exogenous selection, I can sign the ATE for all the outcomes considered. I can sign

the ATE as strictly negative (under the no false positives assumption) when up to two percent of eligible

women misreport participation only for the near-term pregnancy outcome in the full sample. With no

assumption on the selection mechanism, it is impossible to sign the ATE. The MTS assumption alone,

depicting negative selection, with no ME, almost always portrays prenatal WIC participation in a positive

light. This is consistent with the existing literature which accounts for endogeneity but not misreporting.

Perhaps the most interesting result, albeit con�ned to the case of no ME, pertains to that under the

joint assumption of MIV and MTS. The evidence suggests a bene�cial impact of WIC on all birth weight

outcomes in the absence of ME.

Nationally representative household survey data constitute the basis of empirical research aimed at

evaluating public policy e¤ectiveness. However, these are plagued by ME about program participation

due to a combination of factors like social stigma and recall error. The existing literature on ME suggests

that these large scale surveys will be more valuable when coupled with some form of veri�cation about
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program participation. Although administrative data is potentially the most reliable source of information

on program participation, they often lack the breadth of survey data in terms of a broad range of outcomes

and missing counterfactuals (Foster et al., 2010).

In sum, this work corroborates the existing literature on WIC: there exists a positive association

between WIC and birth outcomes. However, it is impossible to sign the causal e¤ect for several di¤erent

birth outcomes under the assumptions concerning the selection process considered here when only one

percent of women misreport. So, I am unable to conclude there exists a bene�cial causal impact of WIC

using the bounding approach alone. The IV strategy of Lewbel (2010), however, suggests a bene�cial

causal e¤ect of WIC participation on birth weight. This is the �rst attempt to quantify the impact of ME

in WIC reports and serves as an important caveat for future work on WIC evaluation. Future work could

aim for developing alternative methods designed to yield point estimates of the causal e¤ect of WIC in the

presence of nonrandom selection and measurement error.
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Figure 1: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 1500 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B.  Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                      C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.003,  0.003] p.e.† [  0.003,  0.003] p.e. [ -0.316,  0.684] p.e. [ -0.316,  0.684] p.e. [  0.003,  0.684] p.e. [  0.003,  0.684] p.e. [  0.005,  0.683] p.e. [  0.005,  0.683] p.e. [  0.000,  0.684] p.e. [  0.000,  0.684] p.e.

0.01 [ -0.044,  0.048] p.e. [ -0.018,  0.004] p.e. [ -0.326,  0.694] p.e. [ -0.321,  0.694] p.e. [ -0.044,  0.694] p.e. [ -0.018,  0.694] p.e. [ -0.016,  0.692] p.e. [ -0.016,  0.693] p.e. [  0.000,  0.694] p.e. [  0.000,  0.694] p.e.

0.02 [ -0.092,  0.092] p.e. [ -0.018,  0.004] p.e. [ -0.336,  0.704] p.e. [ -0.321,  0.704] p.e. [ -0.092,  0.704] p.e. [ -0.018,  0.704] p.e. [ -0.016,  0.703] p.e. [ -0.016,  0.703] p.e. [  0.000,  0.704] p.e. [  0.000,  0.704] p.e.

0.05 [ -0.251,  0.216] p.e. [ -0.018,  0.007] p.e. [ -0.366,  0.734] p.e. [ -0.321,  0.734] p.e. [ -0.251,  0.734] p.e. [ -0.018,  0.734] p.e. [ -0.017,  0.733] p.e. [ -0.016,  0.733] p.e. [  0.000,  0.734] p.e. [  0.000,  0.734] p.e.

0.10 [ -0.586,  0.410] p.e. [ -0.018,  0.011] p.e. [ -0.416,  0.784] p.e. [ -0.321,  0.784] p.e. [ -0.586,  0.784] p.e. [ -0.018,  0.784] p.e. [ -0.018,  0.783] p.e. [ -0.016,  0.783] p.e. [  0.000,  0.784] p.e. [  0.000,  0.784] p.e.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. These CI are still being computed. All analyses are weighted using Wave 1 specific sample weights. Number of observations = 4300. Sample sizes are rounded to the 
nearest 50 by requirement. For other details, refer to Table A1.

Table 1: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 1500 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection



     Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors

Figure 2: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 2500 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                      B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.001,  0.001] p.e.† [  0.001,  0.001] p.e. [ -0.340,  0.660] p.e. [ -0.340,  0.660] p.e. [  0.001,  0.660] p.e. [  0.001,  0.660] p.e. [  0.007,  0.661] p.e. [  0.007,  0.661] p.e. [  0.000,  0.660] p.e. [  0.000,  0.660] p.e.

0.01 [ -0.043,  0.043] p.e. [ -0.043,  0.005] p.e. [ -0.350,  0.670] p.e. [ -0.350,  0.670] p.e. [ -0.043,  0.670] p.e. [ -0.043,  0.670] p.e. [ -0.035,  0.671] p.e. [ -0.035,  0.671] p.e. [  0.000,  0.670] p.e. [  0.000,  0.670] p.e.

0.02 [ -0.088,  0.084] p.e. [ -0.088,  0.008] p.e. [ -0.360,  0.680] p.e. [ -0.360,  0.680] p.e. [ -0.088,  0.680] p.e. [ -0.088,  0.680] p.e. [ -0.081,  0.681] p.e. [ -0.081,  0.681] p.e. [  0.000,  0.680] p.e. [  0.000,  0.680] p.e.

0.05 [ -0.238,  0.201] p.e. [ -0.104,  0.020] p.e. [ -0.390,  0.710] p.e. [ -0.363,  0.710] p.e. [ -0.238,  0.710] p.e. [ -0.104,  0.710] p.e. [ -0.102,  0.686] p.e. [ -0.098,  0.711] p.e. [  0.000,  0.710] p.e. [  0.000,  0.710] p.e.

0.10 [ -0.551,  0.383] p.e. [ -0.104,  0.046] p.e. [ -0.440,  0.760] p.e. [ -0.363,  0.760] p.e. [ -0.551,  0.760] p.e. [ -0.104,  0.760] p.e. [ -0.109,  0.761] p.e. [ -0.098,  0.761] p.e. [  0.000,  0.760] p.e. [  0.000,  0.760] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. All analyses are weighted using Wave 1 specific sample weights. Number of observations = 4300. Sample sizes are rounded to the nearest 50 by requirement. For other 
details, refer to Table A1.

Table 2: Sharp Bounds on the ATE of WIC Participation on Birth Weight ≥ 2500 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption
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No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



Figure 3: Sharp Bounds on the ATE of WIC Participation on Birth Weight: 2500 - 4000 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B.  Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                      C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.019,  0.019] p.e.† [  0.019,  0.019] p.e. [-0.361, 0.639] p.e. [-0.361, 0.639] p.e. [  0.019,  0.639] p.e. [  0.019,  0.639] p.e. [  0.026,  0.639] p.e. [  0.026,  0.639] p.e. [  0.000,  0.639] p.e. [  0.000,  0.639] p.e.

0.01 [ -0.021,  0.058] p.e. [ -0.021,  0.026] p.e. [ -0.371,  0.649] p.e. [ -0.371,  0.649] p.e. [ -0.021,  0.649] p.e. [ -0.021,  0.649] p.e. [ -0.016,  0.649] p.e. [ -0.016,  0.649] p.e. [  0.000,  0.649] p.e. [  0.000,  0.649] p.e.

0.02 [ -0.062,  0.095] p.e. [ -0.062,  0.034] p.e. [ -0.381,  0.659] p.e. [ -0.381,  0.659] p.e. [ -0.062,  0.659] p.e. [ -0.062,  0.659] p.e. [ -0.056,  0.660] p.e. [ -0.056,  0.659] p.e. [  0.000,  0.659] p.e. [  0.000,  0.659] p.e.

0.05 [ -0.199,  0.202] p.e. [ -0.199,  0.060] p.e. [ -0.411,  0.689] p.e. [ -0.411,  0.689] p.e. [ -0.199,  0.689] p.e. [ -0.199,  0.689] p.e. [ -0.151,  0.669] p.e. [ -0.149,  0.689] p.e. [  0.000,  0.689] p.e. [  0.000,  0.689] p.e.

0.10 [ -0.483,  0.368] p.e. [ -0.203,  0.114] p.e. [ -0.461,  0.739] p.e. [ -0.411,  0.739] p.e. [ -0.483,  0.739] p.e. [ -0.203,  0.739] p.e. [ -0.210,  0.702] p.e. [ -0.194,  0.739] p.e. [  0.000,  0.739] p.e. [  0.000,  0.739] p.e.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Table 3: Sharp Bounds on the ATE of WIC Participation on Birth Weight: 2500 - 4000 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. All analyses are weighted using Wave 1 specific sample weights. Number of observations = 4300. Sample sizes are rounded to the nearest 50 by requirement. For 
other details, refer to Table A1.



A. Exogenous Selection or No Assumption on Selection                 B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                            C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors

Figure 4: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≤ 4000 grams When Participation Status May be Misclassified: Various Assumptions about Selection

0.018
-0.026

-0.071
-0.219

-0.529

-0.106 -0.106

0.0680.039

0.0260.022
0.060

0.101

0.217

0.397

-0.333 -0.343 -0.353 -0.383 -0.433

-0.361 -0.361

0.667 0.677 0.687 0.717
0.767

1.00

0.50

0.00

-0.50

0.70

-0.30

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

Exogenous and No Selection Assumptions

0.018
0.031

-0.026
-0.071

-0.219

-0.529

-0.001 -0.036

-0.115
-0.113

0.667
0.665

0.677

0.675

0.687

0.684

0.717

0.695

0.767
0.765

1.00

0.50

0.00

-0.50

0.70

-0.20

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Arbitrary Errors
MTS, MTS & MIV, MTS & MTR Assumptions

0.018
0.031

-0.026
-0.071 -0.106

-0.112 -0.106
-0.102

-0.037
-0.002

0.667
0.665

0.677

0.675

0.687

0.685

0.717

0.715

0.767
0.765

0.80

0.60

0.40

0.20

0.00

-0.20

0.70

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q u

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.018,  0.018] p.e.† [  0.018,  0.018] p.e. [ -0.333,  0.667] p.e. [ -0.333,  0.667] p.e. [  0.018,  0.667] p.e. [  0.018,  0.667] p.e. [  0.031,  0.665] p.e. [  0.031,  0.665] p.e. [  0.000,  0.667] p.e. [  0.000,  0.667] p.e.

0.01 [ -0.026,  0.060] p.e. [ -0.026,  0.022] p.e. [ -0.343,  0.677] p.e. [ -0.343,  0.677] p.e. [ -0.026,  0.677] p.e. [ -0.026,  0.677] p.e. [ -0.001,  0.675] p.e. [ -0.002,  0.675] p.e. [  0.000,  0.677] p.e. [  0.000,  0.677] p.e.

0.02 [ -0.071,  0.101] p.e. [ -0.071,  0.026] p.e. [ -0.353,  0.687] p.e. [ -0.353,  0.687] p.e. [ -0.071,  0.687] p.e. [ -0.071,  0.687] p.e. [ -0.036,  0.684] p.e. [ -0.037,  0.685] p.e. [  0.000,  0.687] p.e. [  0.000,  0.687] p.e.

0.05 [ -0.219,  0.217] p.e. [ -0.106,  0.039] p.e. [ -0.383,  0.717] p.e. [ -0.361,  0.717] p.e. [ -0.219,  0.717] p.e. [ -0.106,  0.717] p.e. [ -0.115,  0.695] p.e. [ -0.112,  0.715] p.e. [  0.000,  0.717] p.e. [  0.000,  0.717] p.e.

0.10 [ -0.529,  0.397] p.e. [ -0.106,  0.068] p.e. [ -0.433,  0.767] p.e. [ -0.361,  0.767] p.e. [ -0.529,  0.767] p.e. [ -0.106,  0.767] p.e. [ -0.113,  0.765] p.e. [ -0.102,  0.765] p.e. [  0.000,  0.767] p.e. [  0.000,  0.767] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. All analyses are weighted using Wave 1 specific sample weights. Number of observations = 4300. Sample sizes are rounded to the nearest 50 by requirement. For other 
details, refer to Table A1.

Table 4: Sharp Bounds on the ATE of WIC Participation on Birth Weight ≤ 4000 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

g y g

No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



Figure 5: Sharp Bounds on the ATE of WIC Participation on Gestation Age ≥  33 weeks When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                  B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                    C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [ -0.004, -0.004] p.e.† [ -0.004, -0.004] p.e. [ -0.327,  0.673] p.e. [ -0.327,  0.673] p.e. [ -0.004,  0.673] p.e. [ -0.004,  0.673] p.e. [  0.001,  0.673] p.e. [  0.001,  0.673] p.e. [  0.000,  0.673] p.e. [  0.000,  0.673] p.e.

0.01 [ -0.050,  0.040] p.e. [ -0.047, -0.003] p.e. [ -0.337,  0.683] p.e. [ -0.337,  0.683] p.e. [ -0.050,  0.683] p.e. [ -0.047,  0.683] p.e. [ -0.037,  0.683] p.e. [ -0.037,  0.683] p.e. [  0.000,  0.683] p.e. [  0.000,  0.683] p.e.

0.02 [ -0.098,  0.083] p.e. [ -0.047, -0.001] p.e. [ -0.347,  0.693] p.e. [ -0.337,  0.693] p.e. [ -0.098,  0.693] p.e. [ -0.047,  0.693] p.e. [ -0.044,  0.696] p.e. [ -0.044,  0.693] p.e. [  0.000,  0.693] p.e. [  0.000,  0.693] p.e.

0.05 [ -0.254,  0.205] p.e. [ -0.047,  0.004] p.e. [ -0.377,  0.723] p.e. [ -0.337,  0.723] p.e. [ -0.254,  0.723] p.e. [ -0.047,  0.723] p.e. [ -0.045,  0.723] p.e. [ -0.043,  0.723] p.e. [  0.000,  0.723] p.e. [  0.000,  0.723] p.e.

0.10 [ -0.581,  0.395] p.e. [ -0.047,  0.014] p.e. [ -0.427,  0.773] p.e. [ -0.337,  0.773] p.e. [ -0.581,  0.773] p.e. [ -0.047,  0.773] p.e. [ -0.049,  0.773] p.e. [ -0.043,  0.773] p.e. [  0.000,  0.773] p.e. [  0.000,  0.773] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. All analyses are weighted using Wave 1 specific sample weights. Number of observations = 4250. Sample sizes are rounded to the nearest 50 by requirement. For other 
details, refer to Table A1.

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Table 5: Sharp Bounds on the ATE of WIC Participation on Gestation Age  ≥  33 weeks Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors
No Selection: Arbitrary Errors No Selection: No False Positive Errors

Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR

Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR



     Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors

Figure 6: Sharp Bounds on the ATE of WIC Participation on Gestation Age of 38 - 42 weeks When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                      C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [ -0.022, -0.022] p.e.† [ -0.022, -0.022] p.e. [ -0.417,  0.583] p.e. [ -0.417,  0.583] p.e. [ -0.022,  0.583] p.e. [ -0.022,  0.583] p.e. [   0.001,  0.583] p.e. [   0.001,  0.583] p.e. [  0.000,  0.583] p.e. [  0.000,  0.583] p.e.

0.01 [ -0.057,  0.013] p.e. [ -0.057, -0.010] p.e. [ -0.427,  0.593] p.e. [ -0.427,  0.593] p.e. [ -0.057,  0.593] p.e. [ -0.057,  0.593] p.e. [ -0.027,  0.593] p.e. [ -0.027,  0.593] p.e. [  0.000,  0.593] p.e. [  0.000,  0.593] p.e.

0.02 [ -0.095,  0.046] p.e. [ -0.095,  0.002] p.e. [ -0.437,  0.603] p.e. [ -0.437,  0.603] p.e. [ -0.095,  0.603] p.e. [ -0.095,  0.603] p.e. [ -0.056,  0.603] p.e. [ -0.056,  0.603] p.e. [  0.000,  0.603] p.e. [  0.000,  0.603] p.e.

0.05 [ -0.217,  0.142] p.e. [ -0.217,  0.041] p.e. [ -0.467,  0.633] p.e. [ -0.467,  0.633] p.e. [ -0.217,  0.633] p.e. [ -0.217,  0.633] p.e. [  -0.152,  0.633] p.e. [  -0.152,  0.633] p.e. [  0.000,  0.633] p.e. [  0.000,  0.633] p.e.

0.10 [ -0.473,  0.289] p.e. [ -0.331,  0.122] p.e. [ -0.517,  0.683] p.e. [ -0.491,  0.683] p.e. [ -0.473,  0.683] p.e. [ -0.331,  0.683] p.e. [ -0.254,  0.686] p.e. [ -0.237,  0.683] p.e. [  0.000,  0.683] p.e. [  0.000,  0.683] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. All analyses are weighted using Wave 1 specific sample weights. Number of observations = 4250. Sample sizes are rounded to the nearest 50 by requirement. For other 
details, refer to Table A1.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Table 6: Sharp Bounds on the ATE of WIC Participation on Gestation Age of 38 - 42 weeks Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

g y g

No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



OLS IV OLS IV OLS IV

I. Probability of Birth Weight ≥ 1500 grams
WIC 0.004** 0.005*** 0.004** 0.005*** 0.004** 0.005***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Underid Test 0.000 0.000 0.000
KP F-Stat 1072.789 1052.548 1041.203
Overid Test 0.372 0.304 0.448
Endogeneity 0.116 0.100 0.092
N 4300 4300 4300 4300 4300 4300

II. Probability of Birth Weight ≥ 2500 grams
WIC 0.008 0.009 0.008 0.010 0.008 0.010

(0.007) (0.008) (0.008) (0.008) (0.007) (0.008)

Underid Test 0.000 0.000 0.000
KP F-Stat 1072.789 1052.548 1041.203
Overid Test 0.803 0.815 0.836
Endogeneity 0.638 0.580 0.568
N 4300 4300 4300 4300 4300 4300

III. Probability of Birth Weight: 2500 - 4000 grams
WIC 0.021 0.031* 0.022 0.031* 0.022 0.030*

(0.014) (0.016) (0.014) (0.016) (0.014) (0.016)

Underid Test 0.000 0.000 0.000
KP F-Stat 1072.789 1052.548 1041.203
Overid Test 0.568 0.584 0.575
Endogeneity 0.190 0.179 0.215
N 4300 4300 4300 4300 4300 4300

Table 7.  IV Estimates of the Effect of Prenatal WIC Participation on Infant Birth Outcomes
Specification 1 Specification 2 Specification 3

N 4300 4300 4300 4300 4300 4300

IV. Probability of Birth Weight ≤ 4000 grams
WIC 0.014 0.021 0.014 0.021 0.014 0.020

(0.013) (0.014) (0.013) (0.014) (0.013) (0.014)

Underid Test 0.000 0.000 0.000
KP F-Stat 1072.789 1052.548 1041.203
Overid Test 0.316 0.368 0.340
Endogeneity 0.257 0.262 0.300
N 4300 4300 4300 4300 4300 4300

V. Probability of Gestation Age ≥ 33 weeks
WIC -0.003 -0.002 -0.003 -0.001 -0.002 -0.001

(0.005) (0.006) (0.005) (0.005) (0.005) (0.005)

Underid Test 0.000 0.000 0.000
KP F-Stat 1058.825 1037.184 1025.539
Overid Test 0.238 0.255 0.298
Endogeneity 0.912 0.900 0.927
N 4250 4250 4250 4250 4250 4250

VI. Probability of Gestation Age: 38 - 42 weeks
WIC -0.025 -0.035* -0.026 -0.034* -0.026 -0.034*

(0.018) (0.019) (0.018) (0.019) (0.018) (0.019)

Underid Test 0.000 0.000 0.000
KP F-Stat 1058.825 1037.184 1025.539
Overid Test 0.856 0.868 0.832
Endogeneity 0.180 0.314 0.254
N 4250 4250 4250 4250 4250 4250

NOTES: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. All analyses are weighted using Wave 1 specific sample weights. Underid reports the p-value of 
the Kleibergen-Paap (2006) rk statistic; F-Stat reports the associated F-statistic; Overid reports the p-value of the Hansen J statistic with rejection casting doubt on the instruments' 
validity; Endogeneity reports the p-value of the endogeneity test of the endogenous regressors. N is the sample size. Sample sizes are rounded to the nearest 50 by requirement. For 
other details, refer to Table A1.



Table A1: Summary Statistics

Variable N Mean SD Mean p-value
Prenatal WIC Receipt (1 = Yes) 4350 0.687 0.464
Child's health indicators
  Birth Weight (in grams) 4300 3276.234 574.041 -35.739 0.059
  Birth Weight ≥ 2500 grams (1 = Yes) 4300 0.926 0.262 0.001 0.901
  Birth Weight ≥ 1500 grams (1 = Yes) 4300 0.988 0.111 0.003 0.400
  Birth Weight ≤ 4000 grams (1 = Yes) 4300 0.924 0.264 0.018 0.040
  Normal Birth Weight: 2500 grams - 4000 grams (1 = Yes) 4300 0.851 0.357 0.019 0.107
  Gestation Age (in weeks) 4250 38.779 2.567 -0.001 0.990
  Gestation Age: 38 - 42 weeks (1 = Yes) 4250 0.748 0.434 -0.022 0.131
  Gestation Age ≥ 33 weeks (1 = Yes) 4250 0.968 0.177 -0.004 0.491
  Gestation Age ≥ 37 weeks (1 = Yes) 4250 0.879 0.327 -0.024 0.025
Controls
  Age (in months) 4350 10.527 2.065 -0.086 0.206
  Gender (1 = boy) 4350 0.497 0.500 -0.003 0.875
  White (1 = Yes) 4350 0.354 0.478 -0.115 0.000
  Black (1 = Yes) 4350 0.205 0.404 0.065 0.000
  Hispanic (1 = Yes) 4350 0.367 0.482 0.065 0.000
  Asian (1 = Yes) 4350 0.019 0.138 -0.019 0.000
  Urbanized Area (1 = Yes) 4350 0.688 0.463 -0.041 0.006
  Urbanized Cluster (1 = Yes) 4350 0.142 0.350 0.034 0.003
  Northeast (1 = Yes) 4350 0.140 0.347 -0.044 0.000
  Midwest (1 = Yes) 4350 0.193 0.395 0.000 0.993
  South (1 = Yes) 4350 0.404 0.491 0.005 0.764
  West (1 = Yes) 4350 0.262 0.440 0.039 0.006
  Household Socioeconomic Status (SES) 4350 -0.665 0.532 -0.287 0.000

WIC - No WIC

Appendix A

  Household SES Quintile 1 (1 = Yes) 4350 0.408 0.491 0.173 0.000
  Household SES Quintile 2 (1 = Yes) 4350 0.325 0.468 0.047 0.002
  Household SES Quintile 3 (1 = Yes) 4350 0.182 0.386 -0.105 0.000
  Household SES Quintile 4 (1 = Yes) 4350 0.071 0.257 -0.079 0.000
  Household SES Quintile 5 (1 = Yes) 4350 0.015 0.121 -0.036 0.000
  Household Size 4350 4.649 1.691 -0.170 0.002
  Parents are Married (1 = Yes) 4350 0.470 0.499 -0.151 0.000
  Mother's Age 4350 25.877 5.883 -2.229 0.000
  Mother's Age (1 = Missing) 4350 0.008 0.090 -0.021 0.000
  Kessner Index of Prenatal Care (1 = Adequate) 4350 0.629 0.483 0.028 0.080
  Kessner Index of Prenatal Care (1 = Intermediate) 4350 0.232 0.422 0.026 0.063
  Kessner Index of Prenatal Care (1 = Inadequate) 4350 0.083 0.277 -0.043 0.000
  Kessner Index of Prenatal Care (1 = Unknown) 4350 0.056 0.229 -0.011 0.148
  Father's Age 4350 30.355 5.716 -0.923 0.000
  Father's Age (1 = Missing) 4350 0.219 0.414 0.088 0.000
  Mother's Weight (in kilograms) 4350 72.686 17.833 2.031 0.001
  Mother's Weight (1 = Missing) 4350 0.194 0.396 0.001 0.916
  Mother's Education = High School (1 = Yes) 4350 0.383 0.486 0.051 0.001
  Mother's Education = Some College (1 = Yes) 4350 0.211 0.408 -0.091 0.000
  Mother's Education = Bachelor's Degree (1 = Yes) 4350 0.033 0.179 -0.051 0.000
  Mother's Education = Advanced College Degree (1 = Yes) 4350 0.011 0.105 -0.023 0.000
  Mother's Education (1 = Missing) 4350 0.006 0.079 -0.020 0.000
  Father's Education = High School (1 = Yes) 4350 0.364 0.481 -0.006 0.725
  Father's Education = Some College (1 = Yes) 4350 0.175 0.380 -0.064 0.000
  Father's Education = Bachelor's Degree (1 = Yes) 4350 0.037 0.189 -0.054 0.000
  Father's Education = Advanced College Degree (1 = Yes) 4350 0.018 0.134 -0.035 0.000
  Father's Education (1 = Missing) 4350 0.045 0.208 0.007 0.286
NOTES: The sample includes only 9-month old children from households with income at or below 185% FPL. All analyses are 
weighted using Wave 1 specific sample weights. Urban Cluster is defined as less densely populated than an Urbanized Area. Omitted 
category for race is 'other', area type is 'rural', mother's education is 'less than high school', and father's education is 'less than high 
school'. Child's number of gestation weeks and birth weight have N < 4350. Sample sizes are rounded to the nearest 50 by 
requirement.



Appendix B

Figure B1: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 1500 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                                   B.  Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors

0.004

-0.046 -0.099
-0.278

-0.680

0.053 0.099

0.229

0.425

0.005 0.006 0.009 0.016
-0.020

-0.020 -0.020 -0.020

-0.279 -0.289 -0.299 -0.329 -0.379

-0.283 -0.283
-0.283 -0.283

0.721 0.731 0.741 0.771
0.821

1.00

0.50

0.00

-0.50

-1.00

0.80

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

No Selection: Arbitrary Errors No Selection: No False Positive Errors

Exogenous and No Selection Assumptions

0.004
-0.046

-0.099

-0.278

-0.680

0.721

0.731 0.741 0.771
0.821

0.007 -0.017 -0.017

-0.017 -0.019

0.727 0.736

1.00

0.50

0.00

-0.50

-1.00

0.70

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR

Arbitrary Errors
MTS, MTS & MIV, MTS & MTR Assumptions

0.004
-0.020 -0.020 -0.020 -0.020

-0.017 -0.016 -0.016 -0.0160.007

0.721 0.731 0.741
0.771

0.8210.80

0.60

0.40

0.20

0.00

0.70

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.004,  0.004] p.e.† [  0.004,  0.004] p.e. [-0.279,  0.721] p.e. [-0.279,  0.721] p.e. [  0.004,  0.721] p.e. [  0.004,  0.721] p.e. [  0.007,  0.721] p.e. [  0.007,  0.721] p.e. [  0.000,  0.721] p.e. [  0.000,  0.721] p.e.

0.01 [ -0.046,  0.053] p.e. [ -0.020,  0.005] p.e. [ -0.289,  0.731] p.e. [ -0.283,  0.731] p.e. [ -0.046,  0.731] p.e. [ -0.020,  0.731] p.e. [ -0.017,  0.727] p.e. [ -0.017,  0.731] p.e. [  0.000,  0.731] p.e. [  0.000,  0.731] p.e.

0.02 [ -0.099,  0.099] p.e. [ -0.020,  0.006] p.e. [ -0.299,  0.741] p.e. [ -0.283,  0.741] p.e. [ -0.099,  0.741] p.e. [ -0.020,  0.741] p.e. [ -0.017,  0.736] p.e. [ -0.016,  0.741] p.e. [  0.000,  0.741] p.e. [  0.000,  0.741] p.e.

0.05 [ -0.278,  0.229] p.e. [ -0.020,  0.009] p.e. [ -0.329,  0.771] p.e. [ -0.283,  0.771] p.e. [ -0.278,  0.771] p.e. [ -0.020,  0.771] p.e. [ -0.017,  0.771] p.e. [ -0.016,  0.771] p.e. [  0.000,  0.771] p.e. [  0.000,  0.771] p.e.

0.10 [ -0.680,  0.425] p.e. [ -0.020,  0.016] p.e. [ -0.379,  0.821] p.e. [ -0.283,  0.821] p.e. [ -0.680,  0.821] p.e. [ -0.020,  0.821] p.e. [ -0.019,  0.821] p.e. [ -0.016,  0.821] p.e. [  0.000,  0.821] p.e. [  0.000,  0.821] p.e.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from non-white households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific 
sample weights. Number of observations = 3100. Sample sizes are rounded to the nearest 50 by requirement. 

Table B1: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 1500 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection



     Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors

Figure B2: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 2500 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                      B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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0.011
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0.745

0.795

0.008
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0.7960.80

0.60
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0.20

0.00

-0.20

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.011,  0.011] p.e.† [  0.011,  0.011] p.e. [ -0.305,  0.695] p.e. [ -0.305,  0.695] p.e. [  0.011,  0.695] p.e. [  0.011,  0.695] p.e. [  0.008,  0.696] p.e. [  0.008,  0.696] p.e. [  0.000,  0.695] p.e. [  0.000,  0.695] p.e.

0.01 [ -0.036,  0.056] p.e. [ -0.036,  0.015] p.e. [ -0.315,  0.705] p.e. [ -0.315,  0.705] p.e. [ -0.036,  0.705] p.e. [ -0.036,  0.705] p.e. [ -0.038,  0.706] p.e. [ -0.038,  0.706] p.e. [  0.000,  0.705] p.e. [  0.000,  0.705] p.e.

0.02 [ -0.086,  0.099] p.e. [ -0.086,  0.020] p.e. [ -0.325,  0.715] p.e. [ -0.325,  0.715] p.e. [ -0.086,  0.715] p.e. [ -0.086,  0.715] p.e. [ -0.067,  0.717] p.e. [ -0.067,  0.716] p.e. [  0.000,  0.715] p.e. [  0.000,  0.715] p.e.

0.05 [ -0.253,  0.220] p.e. [ -0.105,  0.035] p.e. [ -0.355,  0.745] p.e. [ -0.329,  0.745] p.e. [ -0.253,  0.745] p.e. [ -0.105,  0.745] p.e. [ -0.101,  0.709] p.e. [ -0.098,  0.746] p.e. [  0.000,  0.745] p.e. [  0.000,  0.745] p.e.

0.10 [ -0.626,  0.403] p.e. [ -0.105,  0.070] p.e. [ -0.405,  0.795] p.e. [ -0.329,  0.795] p.e. [ -0.626,  0.795] p.e. [ -0.105,  0.795] p.e. [-0.107,  0.796] p.e. [ -0.097,  0.796] p.e. [  0.000,  0.795] p.e. [  0.000,  0.795] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from non-white households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3100. Sample sizes are rounded to the nearest 50 by requirement. 

Table B2: Sharp Bounds on the ATE of WIC Participation on Birth Weight ≥ 2500 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



Figure B3: Sharp Bounds on the ATE of WIC Participation on Birth Weight: 2500 - 4000 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B.  Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                          C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.017,  0.017] p.e.† [  0.017,  0.017] p.e. [-0.334, 0.666] p.e. [-0.334, 0.666] p.e. [  0.017,  0.666] p.e. [  0.017,  0.666] p.e. [  0.012,  0.671] p.e. [  0.012,  0.671] p.e. [  0.000,  0.666] p.e. [  0.000,  0.666] p.e.

0.01 [ -0.026,  0.059] p.e. [ -0.026,  0.025] p.e. [ -0.344,  0.676] p.e. [ -0.344,  0.676] p.e. [ -0.026,  0.676] p.e. [ -0.026,  0.676] p.e. [ -0.031,  0.681] p.e. [ -0.031,  0.681] p.e. [  0.000,  0.676] p.e. [  0.000,  0.676] p.e.

0.02 [ -0.072,  0.099] p.e. [ -0.072,  0.034] p.e. [ -0.354,  0.686] p.e. [ -0.354,  0.686] p.e. [ -0.072,  0.686] p.e. [ -0.072,  0.686] p.e. [ -0.077,  0.691] p.e. [ -0.077,  0.691] p.e. [  0.000,  0.686] p.e. [  0.000,  0.686] p.e.

0.05 [ -0.225,  0.210] p.e. [ -0.192,  0.062] p.e. [ -0.384,  0.716] p.e. [ -0.378,  0.716] p.e. [ -0.225,  0.716] p.e. [ -0.192,  0.716] p.e. [ -0.165,  0.723] p.e. [ -0.163,  0.721] p.e. [  0.000,  0.716] p.e. [  0.000,  0.716] p.e.

0.10 [ -0.569,  0.378] p.e. [ -0.192,  0.127] p.e. [ -0.434,  0.766] p.e. [-0.378,  0.766] p.e. [ -0.569,  0.766] p.e. [ -0.192,  0.766] p.e. [ -0.202,  0.718] p.e. [ -0.187,  0.771] p.e. [  0.000,  0.766] p.e. [  0.000,  0.766] p.e.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Table B3: Sharp Bounds on the ATE of WIC Participation on Birth Weight: 2500 - 4000 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from non-white households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific 
sample weights. Number of observations = 3100. Sample sizes are rounded to the nearest 50 by requirement. 



A. Exogenous Selection or No Assumption on Selection                 B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                       C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors

Figure B4: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≤ 4000 grams When Participation Status May be Misclassified: Various Assumptions about Selection
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ATE
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Maximum Allowed Degree of Misclassification

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.006,  0.006] p.e.† [  0.006,  0.006] p.e. [ -0.303,  0.697] p.e. [ -0.303,  0.697] p.e. [  0.006,  0.697] p.e. [  0.006,  0.697] p.e. [  -0.004,  0.700] p.e. [  -0.004,  0.700] p.e. [  0.000,  0.697] p.e. [  0.000,  0.697] p.e.

0.01 [ -0.041,  0.052] p.e. [ -0.041,  0.010] p.e. [ -0.313,  0.707] p.e. [ -0.313,  0.707] p.e. [ -0.041,  0.707] p.e. [ -0.041,  0.707] p.e. [ -0.053,  0.710] p.e. [ -0.054,  0.710] p.e. [  0.000,  0.707] p.e. [  0.000,  0.707] p.e.

0.02 [ -0.091,  0.096] p.e. [ -0.091,  0.014] p.e. [ -0.323,  0.717] p.e. [ -0.323,  0.717] p.e. [ -0.091,  0.717] p.e. [ -0.091,  0.717] p.e. [ -0.093,  0.720] p.e. [ -0.093,  0.720] p.e. [  0.000,  0.717] p.e. [  0.000,  0.717] p.e.

0.05 [ -0.260,  0.218] p.e. [ -0.093,  0.027] p.e. [ -0.353,  0.747] p.e. [ -0.323,  0.747] p.e. [ -0.260,  0.747] p.e. [ -0.093,  0.747] p.e. [ -0.099,  0.724] p.e. [ -0.095,  0.750] p.e. [  0.000,  0.747] p.e. [  0.000,  0.747] p.e.

0.10 [ -0.639,  0.403] p.e. [ -0.093,  0.057] p.e. [ -0.403,  0.797] p.e. [ -0.323,  0.797] p.e. [ -0.639,  0.797] p.e. [ -0.093,  0.797] p.e. [ -0.105,  0.800] p.e. [ -0.094,  0.800] p.e. [  0.000,  0.797] p.e. [  0.000,  0.797] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from non-white households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3100. Sample sizes are rounded to the nearest 50 by requirement. 

Table B4: Sharp Bounds on the ATE of WIC Participation on Birth Weight ≤ 4000 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

g y g
No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



Figure B5: Sharp Bounds on the ATE of WIC Participation on Gestation Age ≥  33 weeks When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                  B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                    C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [ 0.008, 0.008] p.e.† [ 0.008, 0.008] p.e. [ -0.286,  0.714] p.e. [ -0.286,  0.714] p.e. [ 0.008,  0.714] p.e. [ 0.008,  0.714] p.e. [  0.007,  0.714] p.e. [  0.007,  0.714] p.e. [  0.000,  0.714] p.e. [  0.000,  0.714] p.e.

0.01 [ -0.042,  0.055] p.e. [ -0.042, 0.009] p.e. [ -0.296,  0.724] p.e. [ -0.296,  0.724] p.e. [ -0.042,  0.724] p.e. [ -0.042,  0.724] p.e. [ -0.045,  0.724] p.e. [ -0.045,  0.724] p.e. [  0.000,  0.724] p.e. [  0.000,  0.724] p.e.

0.02 [ -0.094,  0.100] p.e. [-0.046, 0.011] p.e. [ -0.306,  0.734] p.e. [ -0.297,  0.734] p.e. [ -0.094,  0.734] p.e. [ -0.046,  0.734] p.e. [ -0.044,  0.733] p.e. [ -0.044,  0.734] p.e. [  0.000,  0.734] p.e. [  0.000,  0.734] p.e.

0.05 [ -0.269,  0.228] p.e. [ -0.046,  0.018] p.e. [ -0.336,  0.764] p.e. [-0.297,  0.764] p.e. [ -0.269,  0.764] p.e. [-0.046,  0.764] p.e. [ -0.045,  0.764] p.e. [ -0.043,  0.764] p.e. [  0.000,  0.764] p.e. [  0.000,  0.764] p.e.

0.10 [ -0.663,  0.419] p.e. [ -0.046,  0.034] p.e. [ -0.386,  0.814] p.e. [ -0.297,  0.814] p.e. [ -0.663,  0.814] p.e. [ -0.046,  0.814] p.e. [ -0.049,  0.814] p.e. [ -0.043,  0.814] p.e. [  0.000,  0.814] p.e. [  0.000,  0.814] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from non-white households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3050. Sample sizes are rounded to the nearest 50 by requirement. 

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Table B5: Sharp Bounds on the ATE of WIC Participation on Gestation Age  ≥  33 weeks Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

No Selection: Arbitrary Errors No Selection: No False Positive Errors

Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR

Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR



     Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors

Figure B6: Sharp Bounds on the ATE of WIC Participation on Gestation Age of 38 - 42 weeks When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                      C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors

-0.021
-0.060

-0.100

-0.238

-0.547

-0.322

0.016 0.052

0.151

0.301

-0.008 0.005

0.050 0.149

-0.397 -0.407 -0.417 -0.447

-0.497
-0.463

0.603 0.613 0.623 0.653
0.703

1.00

0.50

0.00

-0.50

0.70

-0.30

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

Exogenous and No Selection Assumptions

-0.021
-0.060

-0.100

-0.238

-0.547

0.603 0.613 0.623 0.653
0.703

-0.033
-0.069

-0.092
-0.166

-0.304

0.604 0.614 0.624 0.654 0.704

1.00

0.50

0.00

-0.50

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Arbitrary Errors
MTS, MTS & MIV, MTS & MTR Assumptions

-0.021
-0.060

-0.100

-0.238
-0.322

-0.033
-0.069

-0.092
-0.166

-0.288

0.603 0.613 0.623 0.653
0.7030.604 0.614 0.624 0.654 0.704

1.00

0.50

0.00

-0.50

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [ -0.021, -0.021] p.e.† [ -0.021, -0.021] p.e. [ -0.397,  0.603] p.e. [ -0.397,  0.603] p.e. [ -0.021,  0.603] p.e. [ -0.021,  0.603] p.e. [   -0.033,  0.604] p.e. [   -0.033,  0.604] p.e. [  0.000,  0.603] p.e. [  0.000,  0.603] p.e.

0.01 [ -0.060,  0.016] p.e. [ -0.060, -0.008] p.e. [ -0.407,  0.613] p.e. [ -0.407,  0.613] p.e. [ -0.060,  0.613] p.e. [ -0.060,  0.613] p.e. [ -0.069,  0.614] p.e. [ -0.069,  0.614] p.e. [  0.000,  0.613] p.e. [  0.000,  0.613] p.e.

0.02 [ -0.100,  0.052] p.e. [ -0.100,  0.005] p.e. [ -0.417,  0.623] p.e. [ -0.417,  0.623] p.e. [ -0.100,  0.623] p.e. [ -0.100,  0.623] p.e. [ -0.092,  0.624] p.e. [ -0.092,  0.624] p.e. [  0.000,  0.623] p.e. [  0.000,  0.623] p.e.

0.05 [ -0.238,  0.151] p.e. [-0.238,  0.050] p.e. [ -0.447,  0.653] p.e. [ -0.447,  0.653] p.e. [ -0.238,  0.653] p.e. [ -0.238,  0.653] p.e. [  -0.166,  0.654] p.e. [  -0.166,  0.654] p.e. [  0.000,  0.653] p.e. [  0.000,  0.653] p.e.

0.10 [ -0.547,  0.301] p.e. [ -0.322,  0.149] p.e. [ -0.497,  0.703] p.e. [ -0.463,  0.703] p.e. [ -0.547,  0.703] p.e. [-0.322,  0.703] p.e. [ -0.304,  0.704] p.e. [ -0.288,  0.704] p.e. [  0.000,  0.703] p.e. [  0.000,  0.703] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from non-white households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3050. Sample sizes are rounded to the nearest 50 by requirement. 

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Table B6: Sharp Bounds on the ATE of WIC Participation on Gestation Age of 38 - 42 weeks Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



OLS IV OLS IV OLS IV

I. Probability of Birth Weight ≥ 1500 grams
WIC 0.004 0.005** 0.003 0.005** 0.003 0.005**

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Underid Test 0.000 0.000 0.000
KP F-Stat 731.241 734.649 732.446
Overid Test 0.750 0.726 0.718
Endogeneity 0.267 0.246 0.212
N 3100 3100 3100 3100 3100 3100

II. Probability of Birth Weight ≥ 2500 grams
WIC 0.013 0.015 0.013 0.014 0.013 0.014

(0.009) (0.010) (0.009) (0.010) (0.009) (0.010)

Underid Test 0.000 0.000 0.000
KP F-Stat 731.241 734.649 732.446
Overid Test 0.980 0.983 0.989
Endogeneity 0.671 0.755 0.733
N 3100 3100 3100 3100 3100 3100

III. Probability of Birth Weight: 2500 - 4000 grams
WIC 0.017 0.026 0.017 0.026 0.017 0.026

(0.017) (0.020) (0.017) (0.020) (0.017) (0.020)

Underid Test 0.000 0.000 0.000
KP F-Stat 731.241 734.649 732.446
Overid Test 0.939 0.931 0.924
Endogeneity 0.316 0.297 0.325
N 3100 3100 3100 3100 3100 3100

Table B7.  IV Estimates of the Effect of Prenatal WIC Participation on Infant Birth Outcomes
Specification 1 Specification 2 Specification 3

N 3100 3100 3100 3100 3100 3100

IV. Probability of Birth Weight ≤ 4000 grams
WIC 0.004 0.012 0.004 0.012 0.004 0.012

(0.015) (0.017) (0.015) (0.017) (0.015) (0.017)

Underid Test 0.000 0.000 0.000
KP F-Stat 731.241 734.649 732.446
Overid Test 0.821 0.814 0.820
Endogeneity 0.405 0.356 0.380
N 3100 3100 3100 3100 3100 3100

V. Probability of Gestation Age ≥ 33 weeks
WIC 0.008 0.011 0.008 0.011 0.008 0.011

(0.006) (0.007) (0.006) (0.007) (0.006) (0.007)

Underid Test 0.000 0.000 0.000
KP F-Stat 719.871 722.622 720.128
Overid Test 0.606 0.596 0.592
Endogeneity 0.122 0.121 0.108
N 3050 3050 3050 3050 3050 3050

VI. Probability of Gestation Age: 38 - 42 weeks
WIC -0.021 -0.026 -0.020 -0.025 -0.021 -0.026

(0.022) (0.023) (0.022) (0.023) (0.022) (0.023)

Underid Test 0.000 0.000 0.000
KP F-Stat 719.871 722.622 720.128
Overid Test 0.381 0.382 0.377
Endogeneity 0.674 0.703 0.632
N 3050 3050 3050 3050 3050 3050

NOTES: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. The sample includes only 9-month old children from non-white households with income at or 
below 185% FPL. All analyses are weighted using Wave 1 specific sample weights. Underid reports the p-value of the Kleibergen-Paap (2006) rk statistic; F-Stat reports the 
associated F-statistic; Overid reports the p-value of the Hansen J statistic with rejection casting doubt on the instruments' validity; Endogeneity reports the p-value of the endogeneity 
test of the endogenous regressors. N is the sample size. Sample sizes are rounded to the nearest 50 by requirement.



Appendix C

Figure C1: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 1500 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B.  Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                      C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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ATE
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Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.003,  0.003] p.e.† [  0.003,  0.003] p.e. [ -0.318,  0.682] p.e. [ -0.318,  0.682] p.e. [  0.003,  0.682] p.e. [  0.003,  0.682] p.e. [  0.004,  0.683] p.e. [  0.004,  0.683] p.e. [  0.000,  0.682] p.e. [  0.000,  0.682] p.e.

0.01 [ -0.043,  0.048] p.e. [ -0.019,  0.004] p.e. [ -0.328,  0.692] p.e. [ -0.323,  0.692] p.e. [ -0.043,  0.692] p.e. [ -0.019,  0.692] p.e. [ -0.017,  0.692] p.e. [ -0.017,  0.693] p.e. [  0.000,  0.692] p.e. [  0.000,  0.692] p.e.

0.02 [ -0.091,  0.092] p.e. [ -0.019,  0.005] p.e. [ -0.338,  0.702] p.e. [ -0.323,  0.702] p.e. [ -0.091,  0.702] p.e. [ -0.019,  0.702] p.e. [ -0.017,  0.702] p.e. [ -0.017,  0.703] p.e. [  0.000,  0.702] p.e. [  0.000,  0.702] p.e.

0.05 [ -0.250,  0.216] p.e. [ -0.019,  0.007] p.e. [ -0.368,  0.732] p.e. [ -0.323,  0.732] p.e. [ -0.250,  0.732] p.e. [ -0.019,  0.732] p.e. [ -0.018,  0.733] p.e. [ -0.017,  0.733] p.e. [  0.000,  0.732] p.e. [  0.000,  0.732] p.e.

0.10 [ -0.580,  0.410] p.e. [ -0.019,  0.012] p.e. [ -0.418,  0.782] p.e. [ -0.323,  0.782] p.e. [ -0.580,  0.782] p.e. [ -0.019,  0.782] p.e. [ -0.019,  0.783] p.e. [ -0.017,  0.783] p.e. [  0.000,  0.782] p.e. [  0.000,  0.782] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from urban households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3550. Sample sizes are rounded to the nearest 50 by requirement. 

Table C1: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 1500 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption



     Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors

Figure C2: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≥ 2500 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                      B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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-0.10

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.005,  0.005] p.e.† [  0.005,  0.005] p.e. [ -0.341,  0.659] p.e. [ -0.341,  0.659] p.e. [  0.005,  0.659] p.e. [  0.005,  0.659] p.e. [  0.008,  0.662] p.e. [  0.008,  0.662] p.e. [  0.000,  0.659] p.e. [  0.000,  0.659] p.e.

0.01 [ -0.038,  0.047] p.e. [ -0.038,  0.009] p.e. [ -0.351,  0.669] p.e. [ -0.351,  0.669] p.e. [ -0.038,  0.669] p.e. [ -0.038,  0.669] p.e. [ -0.034,  0.672] p.e. [ -0.034,  0.672] p.e. [  0.000,  0.669] p.e. [  0.000,  0.669] p.e.

0.02 [ -0.084,  0.088] p.e. [ -0.084,  0.013] p.e. [ -0.361,  0.679] p.e. [ -0.361,  0.679] p.e. [ -0.084,  0.679] p.e. [ -0.084,  0.679] p.e. [ -0.075,  0.682] p.e. [ -0.075,  0.682] p.e. [  0.000,  0.679] p.e. [  0.000,  0.679] p.e.

0.05 [ -0.232,  0.204] p.e. [ -0.107,  0.025] p.e. [ -0.391,  0.709] p.e. [ -0.366,  0.709] p.e. [ -0.232,  0.709] p.e. [ -0.107,  0.709] p.e. [ -0.105,  0.685] p.e. [ -0.102,  0.712] p.e. [  0.000,  0.709] p.e. [  0.000,  0.709] p.e.

0.10 [ -0.541,  0.385] p.e. [ -0.107,  0.051] p.e. [ -0.441,  0.759] p.e. [-0.366,  0.759] p.e. [ -0.541,  0.759] p.e. [ -0.107,  0.759] p.e. [ -0.112,  0.762] p.e. [ -0.101,  0.762] p.e. [  0.000,  0.759] p.e. [  0.000,  0.759] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from urban households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample weights. 
Number of observations = 3550. Sample sizes are rounded to the nearest 50 by requirement. 

Table C2: Sharp Bounds on the ATE of WIC Participation on Birth Weight ≥ 2500 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

No Selection: Arbitrary Errors No Selection: No False Positive Errors MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTR



Figure C3: Sharp Bounds on the ATE of WIC Participation on Birth Weight: 2500 - 4000 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                 B.  Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                      C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.021,  0.021] p.e.† [  0.021,  0.021] p.e. [-0.363, 0.637] p.e. [-0.363, 0.637] p.e. [  0.021,  0.637] p.e. [  0.021,  0.637] p.e. [  0.021,  0.640] p.e. [  0.021,  0.640] p.e. [  0.000,  0.637] p.e. [  0.000,  0.637] p.e.

0.01 [ -0.018,  0.060] p.e. [ -0.018,  0.029] p.e. [ -0.373,  0.647] p.e. [ -0.373,  0.647] p.e. [ -0.018,  0.647] p.e. [ -0.018,  0.647] p.e. [ -0.008,  0.650] p.e. [ -0.008,  0.650] p.e. [  0.000,  0.647] p.e. [  0.000,  0.647] p.e.

0.02 [ -0.059,  0.097] p.e. [ -0.059,  0.037] p.e. [ -0.383,  0.657] p.e. [ -0.383,  0.657] p.e. [ -0.059,  0.657] p.e. [ -0.059,  0.657] p.e. [ -0.039,  0.660] p.e. [ -0.039,  0.660] p.e. [  0.000,  0.657] p.e. [  0.000,  0.657] p.e.

0.05 [ -0.193,  0.202] p.e. [ -0.193,  0.063] p.e. [ -0.413,  0.687] p.e. [ -0.413,  0.687] p.e. [ -0.193,  0.687] p.e. [ -0.193,  0.687] p.e. [ -0.145,  0.693] p.e. [ -0.144,  0.690] p.e. [  0.000,  0.687] p.e. [  0.000,  0.687] p.e.

0.10 [ -0.474,  0.367] p.e. [ -0.209,  0.119] p.e. [ -0.463,  0.737] p.e. [ -0.416,  0.737] p.e. [ -0.474,  0.737] p.e. [ -0.209,  0.737] p.e. [ -0.228,  0.705] p.e. [ -0.211,  0.740] p.e. [  0.000,  0.737] p.e. [  0.000,  0.737] p.e.

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from urban households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3550. Sample sizes are rounded to the nearest 50 by requirement. 

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Table C3: Sharp Bounds on the ATE of WIC Participation on Birth Weight: 2500 - 4000 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection



Figure C4: Sharp Bounds on the ATE of WIC Participation on Birth Weight  ≤ 4000 grams When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                                 B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                     C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors
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Maximum Allowed Degree of Misclassification

No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

0.016

-0.027
-0.072

-0.218

-0.525

0.058
0.099

0.214

0.394

0.020 0.025
0.038 0.067

-0.337 -0.347 -0.357 -0.387 -0.437
-0.365 -0.365

0.663 0.673 0.683 0.713
0.763

-0.110 -0.110

1.00

0.50

0.00

-0.50

0.70

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

Exogenous and No Selection Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [  0.016,  0.016] p.e.† [  0.016,  0.016] p.e. [ -0.337,  0.663] p.e. [ -0.337,  0.663] p.e. [  0.016,  0.663] p.e. [  0.016,  0.663] p.e. [  0.042,  0.662] p.e. [  0.042,  0.662] p.e. [  0.000,  0.663] p.e. [  0.000,  0.663] p.e.

0.01 [ -0.027,  0.058] p.e. [ -0.027,  0.020] p.e. [ -0.347,  0.673] p.e. [ -0.347,  0.673] p.e. [ -0.027,  0.673] p.e. [ -0.027,  0.673] p.e. [ 0.009,  0.672] p.e. [ 0.008,  0.672] p.e. [  0.000,  0.673] p.e. [  0.000,  0.673] p.e.

0.02 [-0.072,  0.099] p.e. [ -0.072,  0.025] p.e. [ -0.357,  0.683] p.e. [ -0.357,  0.683] p.e. [ -0.072,  0.683] p.e. [ -0.072,  0.683] p.e. [ -0.027,  0.681] p.e. [ -0.028,  0.682] p.e. [  0.000,  0.683] p.e. [  0.000,  0.683] p.e.

0.05 [ -0.218,  0.214] p.e. [ -0.110,  0.038] p.e. [ -0.387,  0.713] p.e. [ -0.365,  0.713] p.e. [ -0.218,  0.713] p.e. [ -0.110,  0.713] p.e. [ -0.125,  0.693] p.e. [ -0.121,  0.712] p.e. [  0.000,  0.713] p.e. [  0.000,  0.713] p.e.

0.10 [ -0.525,  0.394] p.e. [ -0.110,  0.067] p.e. [ -0.437,  0.763] p.e. [ -0.365,  0.763] p.e. [ -0.525,  0.763] p.e. [ -0.110,  0.763] p.e. [ -0.114,  0.762] p.e. [ -0.103,  0.762] p.e. [  0.000,  0.763] p.e. [  0.000,  0.763] p.e.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from urban households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample 
weights. Number of observations = 3550. Sample sizes are rounded to the nearest 50 by requirement. 

Table C4: Sharp Bounds on the ATE of WIC Participation on Birth Weight ≤ 4000 grams Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTRNo Selection: Arbitrary Errors No Selection: No False Positive Errors



Figure C5: Sharp Bounds on the ATE of WIC Participation on Gestation Age ≥  33 weeks When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                  B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                    C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Errors

-0.003
-0.049

-0.096
-0.252

-0.577

-0.044 -0.044
-0.044 -0.044

-0.001 0.000 0.005 0.015
0.041

0.084

0.206

0.397

-0.328 -0.338

-0.337

-0.348 -0.378 -0.428

-0.337 -0.337 -0.337

0.672 0.682 0.692 0.722
0.772

1.00

0.50

0.00

-0.50

0.60
0.70

-0.30

ATE

0.00 0.01 0.02 0.05 0.10
Maximum Allowed Degree of Misclassification

Exogenous and No Selection Assumptions

-0.003
-0.002

-0.049
-0.096

-0.252

-0.577

-0.046

-0.048 -0.051

0.672 0.682 0.692 0.722
0.772

1.00

0.50

0.00

-0.50

0.60
0.70

-0.30

ATE

0.00 0.01 0.02 0.05 0.10
M i All d D f Mi l ifi i

Arbitrary Errors
MTS, MTS & MIV, MTS & MTR Assumptions

-0.003
-0.002

-0.044
-0.049

-0.044 -0.044 -0.044
-0.045 -0.045 -0.045

0.672 0.682 0.692
0.722
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0.00
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ATE
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No False Positive Errors
MTS, MTS & MIV, MTS & MTR Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [ -0.003, -0.003] p.e.† [ -0.003, -0.003] p.e. [ -0.328,  0.672] p.e. [ -0.328,  0.672] p.e. [ -0.003,  0.672] p.e. [ -0.003,  0.672] p.e. [  -0.002,  0.672] p.e. [  -0.002,  0.672] p.e. [  0.000,  0.672] p.e. [  0.000,  0.672] p.e.

0.01 [ -0.049,  0.041] p.e. [ -0.044, -0.001] p.e. [ -0.338,  0.682] p.e. [ -0.337,  0.682] p.e. [ -0.049,  0.682] p.e. [ -0.044,  0.682] p.e. [ -0.049,  0.682] p.e. [ -0.049,  0.682] p.e. [  0.000,  0.682] p.e. [  0.000,  0.682] p.e.

0.02 [ -0.096,  0.084] p.e. [ -0.044, 0.000] p.e. [ -0.348,  0.692] p.e. [ -0.337,  0.692] p.e. [ -0.096,  0.692] p.e. [ -0.044,  0.692] p.e. [ -0.046,  0.692] p.e. [ -0.045,  0.692] p.e. [  0.000,  0.692] p.e. [  0.000,  0.692] p.e.

0.05 [ -0.252,  0.206] p.e. [-0.044,  0.005] p.e. [ -0.378,  0.722] p.e. [ -0.337,  0.722] p.e. [ -0.252,  0.722] p.e. [ -0.044,  0.722] p.e. [ -0.048,  0.722] p.e. [ -0.045,  0.722] p.e. [  0.000,  0.722] p.e. [  0.000,  0.722] p.e.

0.10 [ -0.577,  0.397] p.e. [ -0.044,  0.015] p.e. [ -0.428,  0.772] p.e. [ -0.337,  0.772] p.e. [ -0.577,  0.772] p.e. [ -0.044,  0.772] p.e. [ -0.051,  0.772] p.e. [ -0.045,  0.772] p.e. [  0.000,  0.772] p.e. [  0.000,  0.772] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from urban households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample weights. 
Number of observations = 3500. Sample sizes are rounded to the nearest 50 by requirement.

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Table C5: Sharp Bounds on the ATE of WIC Participation on Gestation Age  ≥  33 weeks Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

No Selection: Arbitrary Errors No Selection: No False Positive Errors

Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR

Maximum Allowed Degree of Misclassification

MTS Alone Joint MTS & MIV Joint MTS & MTR



Figure C6: Sharp Bounds on the ATE of WIC Participation on Gestation Age of 38 - 42 weeks When Participation Status May be Misclassified: Various Assumptions about Selection

A. Exogenous Selection or No Assumption on Selection                                  B. Only MTS or Joint MTS & MIV or MTS & MTR: Arbitrary Errors                                                                   C. Only MTS or Joint MTS & MIV or MTS & MTR: No False Positive Error
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ATE
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Exogenous: Arbitrary Errors Exogenous: No False Positive Errors

Exogenous and No Selection Assumptions

Q
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives Arbitrary Errors No False Positives

0.00 [ -0.010, -0.010] p.e.† [ -0.010, -0.010] p.e. [ -0.412,  0.588] p.e. [ -0.412,  0.588] p.e. [ -0.010,  0.588] p.e. [ -0.010,  0.588] p.e. [   -0.010,  0.588] p.e. [   -0.010,  0.588] p.e. [  0.000,  0.588] p.e. [  0.000,  0.588] p.e.

0.01 [ -0.046,  0.024] p.e. [ -0.046, 0.001] p.e. [ -0.422,  0.598] p.e. [ -0.422,  0.598] p.e. [ -0.046,  0.598] p.e. [ -0.046,  0.598] p.e. [ -0.038,  0.598] p.e. [ -0.038,  0.598] p.e. [  0.000,  0.598] p.e. [  0.000,  0.598] p.e.

0.02 [ -0.083,  0.057] p.e. [ -0.083,  0.013] p.e. [ -0.432,  0.608] p.e. [ -0.432,  0.608] p.e. [ -0.083,  0.608] p.e. [ -0.083,  0.608] p.e. [ -0.064,  0.608] p.e. [ -0.064,  0.608] p.e. [  0.000,  0.608] p.e. [  0.000,  0.608] p.e.

0.05 [ -0.204,  0.152] p.e. [ -0.204,  0.053] p.e. [ -0.462,  0.638] p.e. [ -0.462,  0.638] p.e. [ -0.204,  0.638] p.e. [ -0.204,  0.638] p.e. [  -0.129,  0.639] p.e. [  -0.129,  0.638] p.e. [  0.000,  0.638] p.e. [  0.000,  0.638] p.e.

0.10 [ -0.457,  0.300] p.e. [ -0.328,  0.135] p.e. [ -0.512,  0.688] p.e. [ -0.489,  0.688] p.e. [ -0.457,  0.688] p.e. [ -0.328,  0.688] p.e. [ -0.233,  0.694] p.e. [ -0.219,  0.688] p.e. [  0.000,  0.688] p.e. [  0.000,  0.688] p.e.

Notes: † Point estimates (p.e.) and ‡ 95% Confidence Intervals (CI) around ATE are calculated using methods from Imbens-Manski (2004) with 250 pseudosamples. The sample includes only 9-month old children from urban households with income at or below 185% FPL. All analyses are weighted using Wave 1 specific sample weights. 
Number of observations = 3500. Sample sizes are rounded to the nearest 50 by requirement.

Point Estimates of LB and UB and 95% I-M Confidence Intervals (CI) Around the Unknown Parameter ATE

Exogenous Selection No Assumption on Selection MTS Assumption MTS and MIV Assumption MTS and MTR Assumption

Table C6: Sharp Bounds on the ATE of WIC Participation on Gestation Age of 38 - 42 weeks Given Unknown Counterfactuals and Potentially Misclassified Participation Status: Various Assumptions about Selection

MTS Alone Joint MTS & MIV Joint MTS & MTR MTS Alone Joint MTS & MIV Joint MTS & MTRNo Selection: Arbitrary Errors No Selection: No False Positive Errors



OLS IV OLS IV OLS IV

I. Probability of Birth Weight ≥ 1500 grams
WIC 0.004** 0.005** 0.004** 0.005** 0.004** 0.005***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Underid Test 0.000 0.000 0.000
KP F-Stat 921.711 925.821 917.913
Overid Test 0.360 0.341 0.298
Endogeneity 0.156 0.142 0.143
N 3550 3550 3550 3550 3550 3550

II. Probability of Birth Weight ≥ 2500 grams
WIC 0.010 0.011 0.011 0.012 0.011 0.012

(0.008) (0.009) (0.008) (0.009) (0.008) (0.009)

Underid Test 0.000 0.000 0.000
KP F-Stat 921.711 925.821 917.913
Overid Test 0.920 0.944 0.942
Endogeneity 0.915 0.769 0.767
N 3550 3550 3550 3550 3550 3550

III. Probability of Birth Weight: 2500 - 4000 grams
WIC 0.022 0.031* 0.023 0.031* 0.022 0.030*

(0.016) (0.018) (0.016) (0.017) (0.016) (0.017)

Underid Test 0.000 0.000 0.000
KP F-Stat 921.711 925.821 917.913
Overid Test 0.428 0.447 0.438
Endogeneity 0.331 0.290 0.326
N 3550 3550 3550 3550 3550 3550

Table C7.  IV Estimates of the Effect of Prenatal WIC Participation on Infant Birth Outcomes
Specification 1 Specification 2 Specification 3

N 3550 3550 3550 3550 3550 3550

IV. Probability of Birth Weight ≤ 4000 grams
WIC 0.012 0.020 0.012 0.019 0.011 0.018

(0.014) (0.016) (0.014) (0.015) (0.014) (0.016)

Underid Test 0.000 0.000 0.000
KP F-Stat 921.711 925.821 917.913
Overid Test 0.152 0.188 0.191
Endogeneity 0.342 0.337 0.374
N 3550 3550 3550 3550 3550 3550

V. Probability of Gestation Age ≥ 33 weeks
WIC 0.001 0.002 0.002 0.003 0.002 0.003

(0.005) (0.006) (0.005) (0.006) (0.005) (0.005)

Underid Test 0.000 0.000 0.000
KP F-Stat 905.461 908.676 900.847
Overid Test 0.893 0.870 0.797
Endogeneity 0.301 0.294 0.254
N 3500 3500 3500 3500 3500 3500

VI. Probability of Gestation Age: 38 - 42 weeks
WIC -0.009 -0.018 -0.008 -0.016 -0.008 -0.017

(0.020) (0.021) (0.020) (0.021) (0.020) (0.021)

Underid Test 0.000 0.000 0.000
KP F-Stat 905.461 908.676 900.847
Overid Test 0.242 0.222 0.264
Endogeneity 0.265 0.452 0.375
N 3500 3500 3500 3500 3500 3500

NOTES: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors are in parentheses. The sample includes only 9-month old children from urban households with income at or below 
185% FPL. All analyses are weighted using Wave 1 specific sample weights. Underid reports the p-value of the Kleibergen-Paap (2006) rk statistic; F-Stat reports the associated F-
statistic; Overid reports the p-value of the Hansen J statistic with rejection casting doubt on the instruments' validity; Endogeneity reports the p-value of the endogeneity test of the 
endogenous regressors. N is the sample size. Sample sizes are rounded to the nearest 50 by requirement. 



Appendix D

1 Introduction

This technical Appendix contains detailed derivations of the bounds on the ATE presented in Section 5.

This section relies heavily on several earlier works: an earlier version of Kreider et al. (2011), Manski and

Pepper (2000), Kreider and Pepper (2007), and Gundersen and Kreider (2008).

Under each assumption about the selection mechanism, I �rst derive the lower bound (LB) and upper

bound (UB) on the components P [H(1) = 1] and P [H(0) = 1] ignoring measurement error (ME). Second,

I de�ne the ATE, and de�ne its LB and UB in terms of the components. Then, I introduce ME and derive

new bounds on P [H(1) = 1] and P [H(0) = 1]: Accordingly, I get the LB and UB on the ATE with ME.

The di¤erent assumptions about selection that are considered in this study are:

1. Exogenous Selection

2. No Assumption on Selection

3. Monotone Treatment Selection (MTS) denoting negative selection into the treatment, WIC

4. Monotone Instrumental Variable (MIV) using SES as the MIV

5. Monotone Treatment Response

I consider �ve scenarios based on selection assumptions. The �rst three correspond to exogenous

selection, no assumption on selection, and MTS. The fourth combines the assumptions of MTS and MIV,

and the last combines the MTS and MTR assumptions.

The di¤erent assumptions about ME are:

1. Upper Bound Error Rate Assumption: P (Z� = 0) � Q

2. No False Positives Assumption: If W = 1, then W � = 1

The Arbitrary Errors model imposes only the �rst assumption and the No False Positives model imposes

both the assumptions about ME. each of the �ve selection scenarios are combined with each of the two

models of ME to yield ten scenarios in all.

1



2 Exogenous Selection Bounds

2.1 No Misclassi�cation Errors

With no ME, the true W � is observed. And, the exogenous selection assumption is given by:

P [H(1) = 1;W �] = P [H(1) = 1]

=) P [H(1) = 1;W � = 1] = P [H(1) = 1;W � = 0] = P [H(1) = 1]

P [H(0) = 1;W �] = P [H(0) = 1]

=) P [H(0) = 1;W � = 1] = P [H(0) = 1;W � = 0] = P [H(0) = 1]:

So, Equation (2) becomes:

P [H(1) = 1] = P [H = 1jW � = 1]P (W � = 1) + P [H(1) = 1jW � = 0]P (W � = 0)

= P [H = 1jW � = 1]P (W � = 1) + P [H = 1jW � = 1] [1� P (W � = 1)]

= P [H = 1jW � = 1] [P (W � = 1)� P (W � = 1)] + P [H = 1jW � = 1]

) P [H(1) = 1] = P [H = 1jW � = 1]

P [H(0) = 1] = P [H(0) = 1jW � = 1]P (W � = 1) + P [H = 1jW � = 0]P (W � = 0)

= P [H = 1jW � = 0] [1� P (W � = 0)] + P [H = 1jW � = 0]P (W � = 0)

= P [H = 1jW � = 0] [P (W � = 0)� P (W � = 0)] + P [H = 1jW � = 0]

) P [H(0) = 1] = P [H = 1jW � = 0] :

) ATE = P [H(1) = 1]� P [H(0) = 1]

= P [H = 1jW � = 1]� P [H = 1jW � = 0] :

2.2 Allowing for Misclassi�cation Errors

Allowing for ME, the trueW � is not observed. The data only has a self-reported indicator,W: Accordingly,

P [H(1) = 1] and P [H(0) = 1] cannot be identi�ed without explicit assumptions about ME. To illustrate:

P [H(1) = 1] = P [H = 1jW � = 1]

=
P [H = 1;W � = 1]

P (W � = 1)

P [H(1) = 1] =
[P (H = 1;W = 1)� �+1 + �

�
1 ]

[P (W = 1)� (�+1 + �
+
0 ) + (�

�
1 + �

�
0 )]
:
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This is Equation 7 in Section 5.2.2. Analogously, P [H(0) = 1] can be written as

P [H(0) = 1] = P [H = 1jW � = 0]

=
P [H = 1;W � = 0]

P (W � = 0)

P [H(0) = 1] =
[P (H = 1;W = 0) + �+1 � �

�
1 ]

[P (W = 0) + (�+1 + �
+
0 )� (�

�
1 + �

�
0 )]
:

2.2.1 Arbitrary Errors Model

The bounds for this model are derived and proved in Kreider and Pepper (2007): Propositions 1 and A.1.

2.2.2 No False Positives Model

With the additional assumption of no false positive errors, the bounds on P [H(1) = 1] in Equation 7 in

Section 5.2.2 can be derived as follows:

For the LB I set �+1 = 0, �
�
0 ! �UB�0 , ��1 ! �LB�1 = 0, and �+0 ! �LB+0 = 0 so that

LB =
P [H = 1;W = 1]

P (W = 1) + �UB�0

:

For the UB I set ��1 ! �UB�1 , �+0 = 0, �
+
1 ! �LB+1 = 0, and ��0 ! �LB�0 = 0 so that

UB =
P [H = 1;W = 1] + �UB�1

P (W = 1) + �UB�1

:

Accordingly, P [H(1) = 1] is bounded as shown:

P [H = 1;W = 1]

P (W = 1) + �UB�0

� P [H(1) = 1] � P [H = 1;W = 1] + �UB�1

P (W = 1) + �UB�1

which is Equation 8 in Section 5.2.2.

Similarly, the bounds on P [H(0) = 1] can be derived as follows:

For the LB I set ��1 ! �UB�1 , �+0 = 0, �
+
1 ! �LB+1 = 0, and ��0 ! �LB�0 = 0 so that

LB =
P [H = 1;W = 0]� �UB�1

P (W = 0)� �UB�1

:

For the UB I set �+1 = 0, �
�
0 ! �UB�0 , ��1 ! �LB�1 = 0, and �+0 ! �LB+0 = 0 so that

UB :
P [H = 1;W = 0]

P (W = 0)� �UB�0

:

Accordingly, P [H(0) = 1] is bounded as

P [H = 1;W = 0]� �UB�1

P (W = 0)� �UB�1

� P [H(0) = 1] � P [H = 1;W = 0]

P (W = 0)� �UB�0

:
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This is Equation 9 in Section 5.2.2.

Since

ATE = P [H(1) = 1]� P [H(0) = 1]

the bounds on the ATE are given by:

UBATE = UBP [H(1)=1] � LBP [H(0)=1]

=
P [H = 1;W = 1] + �UB�1

P (W = 1) + �UB�1

� P [H = 1;W = 0]� �UB�1

P (W = 0)� �UB�1

LBATE = LBP [H(1)=1] � UBP [H(0)=1]

=
P [H = 1;W = 1]

P (W = 1) + �UB�0

� P [H = 1;W = 0]

P (D = 0)� �UB�0

:

These bounds on the ATE are shown in Equation 10 in Section 5.2.2.

3 No Selection Assumption

3.1 No Misclassi�cation Errors

With no ME, the true W � is observed. By the Law of Total Probability we know:

P [H(1) = 1] = P [H(1) = 1jW � = 1]P (W � = 1) + P [H(1) = 1jW � = 0]P (W � = 0):

Now, without any assumptions on the nature of selection, all that we know is that the latent probability

P [H(1) = 1jW � = 0] �[0; 1]:

When P [H(1) = 1jW � = 0] = 0 the LB is derived as

P [H(1) = 1] = P [H = 1jW � = 1]P (W � = 1)

=
P [H = 1;W � = 1]P (W � = 1)

P (W � = 1)

= P [H = 1;W � = 1] :

When P [H(1) = 1jW � = 0] = 1 the UB is attained in the following way:

P [H(1) = 1] = P [H = 1jW � = 1]P (W � = 1) + P (W � = 0)

P [H(1) = 1] = P [H = 1;W � = 1] + P (W � = 0)

) P [H = 1;W � = 1] � P [H(1) = 1] � P [H = 1;W � = 1] + P (W � = 0):

This is Equation 11 in Section 5.3.1. Similarly, we know:

P [H(0) = 1] = P [H(0) = 1jW � = 1]P (W � = 1) + P [H = 1jW � = 0]P (W � = 0):
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Again, the latent probability P [H(0) = 1jW � = 1] �[0; 1]:

When P [H(0) = 1jW � = 1] = 0 the LB is:

P [H(0) = 1] = P [H = 1jW � = 0]P (W � = 0)

= P [H = 1;W � = 0] :

When P [H(0) = 1jW � = 1] = 1 the UB is:

P [H(0) = 1] = P (W � = 1) + P [H = 1jW � = 0]P (W � = 0)

= P (W � = 1) + P [H = 1;W � = 0] :

) P [H = 1;W � = 0] � P [H(0) = 1] � P (W � = 1) + P [H = 1;W � = 0] :

This is Equation 12 in Section 5.3.1.

3.2 Allowing for Misclassi�cation Errors

Allowing for ME, the trueW � is not observed. The data only has a self-reported indicator,W: Accordingly,

P [H(1) = 1] and P [H(0) = 1] cannot be identi�ed without explicit assumptions about ME.

Accordingly, the bounds on P [H(1) = 1] are derived as follows:

LB: P [H = 1;W � = 1] = P [H = 1;W = 1]� �+1 + �
�
1

UB: P [H = 1;W � = 1]+P (W � = 0) = P [H = 1;W = 1]� �+1 + �
�
1 +P (W = 0)+ �+1 + �

+
0 � �

�
1 � �

�
0

= P [H = 1;W = 1] + P (W = 0) + �+0 � �
�
0 :

So, P [H(1) = 1] is bounded as

P [H = 1;W = 1]� �+1 + �
�
1 � P [H(1) = 1] � P [H = 1;W = 1] + P (W = 0) + �+0 � �

�
0 :

This is Equation 13 in Section 5.3.2.

The bounds on P [H(0) = 1] are analogously derived as

LB: P [H = 1;W � = 0] = P [H = 1;W = 0] + �+1 � �
�
1

UB: P [H = 1;W � = 0]+P (W � = 1) = P [H = 1;W = 0]+ �+1 � �
�
1 +P (W = 1)� �+1 � �

+
0 + �

�
1 + �

�
0

= P [H = 1;W = 0] + P (W = 1)� �+0 + �
�
0 :

So, P [H(0) = 1] is bounded as

P [H = 1;W = 0] + �+1 � �
�
1 � P [H(0) = 1] � P [H = 1;W = 0] + P (W = 1)� �+0 + �

�
0 :

This is Equation 14 in Section 5.3.2.
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3.2.1 Arbitrary Errors Model

Here, I impose only Assumption 1 about ME under the No Selection Assumption case. The bounds on

P [H(1) = 1] can be derived in the following way:

For the LB I set �+1 ! �UB+1 and ��1 ! �LB�1 = 0 so that

LB = P [H = 1;W = 1]� �UB+1 :

For the UB I set �+0 ! �UB+0 and ��0 ! �LB�0 = 0 so that

UB = P [H = 1;W = 1] + P (W = 0) + �UB+0 :

Accordingly, P [H(1) = 1] is bounded as:

P [H = 1;W = 1]� �UB+1 � P [H(1) = 1] � P [H = 1;W = 1] + P (W = 0) + �UB+0 :

Similarly, the bounds on P [H(0) = 1] are attained in the following way:

For the LB I set ��1 ! �UB�1 and �+1 ! �LB+1 =) 0 so that

LB = P [H = 1;W = 0]� �UB�1 :

For the UB I set ��0 ! �UB�0 and �+0 ! �LB+0 = 0 so that

UB = P [H = 1;W = 0] + P (W = 1) + �UB�0 :

Accordingly, P [H(0) = 1] is bounded as follows:

P [H = 1;W = 0]� �UB�1 � P [H(0) = 1] � P [H = 1;W = 0] + P (W = 1) + �UB�0 :

Since

ATE = P [H(1) = 1]� P [H(0) = 1]

the bounds on the ATE are given by:

UBATE = UBP [H(1)=1] � LBP [H(0)=1]

= P [H = 1;W = 1] + P (W = 0) + �UB+0 � fP [H = 1;W = 0]� �UB�1 g

= P [H = 1;W = 1] + P (W = 0) + (�UB+0 + �UB�1 )� P [H = 1;W = 0]

= P [H = 1;W = 1] + P (W = 0) +Q� P [H = 1;W = 0]:

LBATE = LBP [H(1)=1] � UBP [H(0)=1]

= P [H = 1;W = 1]� �UB+1 � fP [H = 1;W = 0] + P (W = 1) + �UB�0 g

= P [H = 1;W = 1]� (�UB+1 + �UB�0 )� P [H = 1;W = 0]� P (W = 1)

= P [H = 1;W = 1]�Q� P [H = 1;W = 0]� P (W = 1):
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To get the sharp bounds on ATE, the UB of the ATE is maximized subject to Equation 4 in Section 5.1

as follows:

UBATE = P [H = 1;W = 1] + P (W = 0) + minfQ; �UB+0 + �UB�1 g � P [H = 1;W = 0].

Similarly, the LB of the ATE is minimized subject to Equation 4 in Section 5.1 as:

LBATE = P [H = 1;W = 1]�minfQ; �UB+1 + �UB�0 g � P [H = 1;W = 0]� P (W = 1).

These constitute Equation 15 in Section 5.3.2.

3.2.2 No False Positives Model

With the additional assumption of no false positive errors, the bounds on P [H(1) = 1] are derived as

follows:

For the LB I set �+1 = 0 and �
�
1 ! �LB�1 = 0 so that

LB = P [H = 1;W = 1]:

For the UB I set �+0 = 0 and �
�
0 ! �LB�0 = 0 so that

UB = P [H = 1;W = 1] + P (W = 0):

Accordingly, P [H(1) = 1] is bounded as

P [H = 1;W = 1] � P [H(1) = 1] � P [H = 1;W = 1] + P (W = 0):

Similarly, the bounds on P [H(0) = 1] are derived as

For the LB I set ��1 ! �UB�1 and �+1 ! �LB+1 = 0 so that

LB = P [H = 1;W = 0]� �UB�1 :

For the UB I set ��0 ! �UB�0 and �+0 ! �LB+0 =) 0 so that

UB = P [H = 1;W = 0] + P (W = 1) + �UB�0 :

Accordingly, P [H(0) = 1] is bounded as follows:

P [H = 1;W = 0]� �UB�1 � P [H(0) = 1] � P [H = 1;W = 0] + P (W = 1) + �UB�0 :

Since

ATE = P [H(1) = 1]� P [H(0) = 1]
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the bounds on the ATE are given by:

UBATE = UBP [H(1)=1] � LBP [H(0)=1]

= P [H = 1;W = 1] + P (W = 0)� fP [H = 1;W = 0]� �UB�1 g

= P [H = 1;W = 1] + P (W = 0) +Qu � P [H = 1;W = 0]

LBATE = LBP [H(1)=1] � UBP [H(0)=1]

= P [H = 1;W = 1]� fP [H = 1;W = 0] + P (W = 1) + �UB�0 g

= P [H = 1;W = 1]�Qu � P [H = 1;W = 0]� P (W = 1):

To get the sharp bounds on ATE I maximize the UB of the ATE as follows:

UBATE = P [H = 1;W = 1] + P (W = 0) + �UB�1 � P [H = 1;W = 0]:

Similarly I minimize the LB of the ATE as follows:

LBATE = P [H = 1;W = 1]� �UB�0 � P [H = 1;W = 0]� P (W = 1):

These constitute Equation 16 in Section 5.3.2.

4 Monotone Treatment Selection

The Monotone Treatment Selection (MTS) assumption denoting negative selection translates into

P [H(1) = 1jW � = 0] � P [H(1) = 1jW � = 1]

P [H(0) = 1jW � = 0] � P [H(0) = 1jW � = 1]:

So,

P [H(1) = 1] = P [H(1) = 1jW � = 1]P (W � = 1) + P [H(1) = 1jW � = 0]P (W � = 0)

= P [H = 1jW � = 1] f1� P (W � = 0)g+ P [H(1) = 1jW � = 0]P (W � = 0)

P [H(1) = 1] = P [H = 1jW � = 1] + P (W � = 0)fP [H(1) = 1jW � = 0]� P [H = 1jW � = 1]g:

Now, under MTS:

P [H(1) = 1jW � = 0] � P [H(1) = 1jW � = 1]

) P [H(1) = 1] = P [H = 1jW � = 1] + P (W � = 0)fterm � 0g

) P [H(1) = 1] � P [H = 1jW � = 1] :
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Again:

P [H(0) = 1] = P [H(0) = 1jW � = 1]P (W � = 1) + P [H(0) = 1jW � = 0]P (W � = 0)

= P [H(0) = 1jW � = 1]P (W � = 1) + P [H = 1jW � = 0] f1� P (W � = 1)g

P [H(0) = 1] = P [H = 1jW � = 0] + P (W � = 1)fP [H(0) = 1jW � = 1]� P [H(0) = 1jW � = 0]g:

Now, under MTS:

P [H(0) = 1jW � = 0] � P [H(0) = 1jW � = 1]

) P [H(0) = 1] = P [H = 1jW � = 0] + P (W � = 1)fterm � 0g

) P [H(0) = 1] � P [H = 1jW � = 0] :

Now, P [H(1) = 1] can be written as

P [H(1) = 1] = P [H(1) = 1jW � = 1] + P (W � = 0)fP [H(1) = 1jW � = 0]� P [H(1) = 1jW � = 1]g:

Since by MTS: P [H(1) = 1jW � = 0] � P [H(1) = 1jW � = 1]

The LB is given by:

P [H(1) = 1jW � = 0] = P [H(1) = 1jW � = 1]

) P [H(1) = 1] = P [H(1) = 1jW � = 1]

) P [H(1) = 1] =
P [H(1) = 1;W � = 1]

P (W � = 1)
:

The UB is attained by setting P [H(1) = 1jW � = 0] to its maximum value of one as shown below.

) P [H(1) = 1] = P [H = 1jW � = 1] + P (W � = 0)f1� P [H = 1jW � = 1]g

) P [H(1) = 1] = P (W � = 0) + P [H = 1jW � = 1] f1� P (W � = 0)g

) P [H(1) = 1] = P (W � = 0) + P (W � = 1)P [H = 1jW � = 1]

) P [H(1) = 1] = P (W � = 0) + P (W � = 1)
P [H = 1;W � = 1]

P (W � = 1)

) P [H(1) = 1] = P (W � = 0) + P [H = 1;W � = 1] :

P [H(1) = 1] is thus bounded as follows:

P [H = 1;W � = 1]

P (W � = 1)
� P [H(1) = 1] � P (W � = 0) + P [H = 1;W � = 1] :

For the bounds on P [H(0) = 1] I begin by writing P [H(0) = 1] as

P [H(0) = 1] = P [H(0) = 1jW � = 1]P (W � = 1) + P [H(0) = 1jW � = 0]P (W � = 0):
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Since by MTS, P [H(0) = 1jW � = 0] � P [H(0) = 1jW � = 1]

The LB is given by setting P [H(0) = 1jW � = 1] at its minimum value of zero.

So, P [H(0) = 1] = P [H(0) = 1jW � = 0]P (W � = 0) so that

P [H(0) = 1] = P [H = 1;W � = 0] :

And, the UB is attained by setting P [H = 1jW � = 0] = P [H(0) = 1jW � = 1]:

) P [H(0) = 1] = P [H(0) = 1jW � = 1] f1� P (W � = 0)g+ P [H = 1jW � = 0]P (W � = 0)

) P [H(0) = 1] = P [H = 1jW � = 0] f1� P (W � = 0)g+ P [H = 1jW � = 0]P (W � = 0)

) P [H(0) = 1] = P [H = 1jW � = 0]

) P [H(0) = 1] =
P [H = 1;W � = 0]

P (W � = 0)
:

P [H(0) = 1] is accordingly bounded as follows:

P [H = 1;W � = 0] � P [H(0) = 1] � P [H = 1;W � = 0]

P (W � = 0)
:

Allowing for ME:

The bounds on P [H(1) = 1] are derived as follows:

The LB given by P [H=1;W �=1]
P (W �=1) is now written as

LB =
P [H = 1;W = 1] + ��1 � �

+
1

[P (W = 1)� (�+1 + �
+
0 ) + (�

�
1 + �

�
0 )]
:

Similarly, the UB given by P (W � = 0) + P [H = 1;W � = 1] is written as

UB = P (W = 0) + �+0 � �
�
0 + P [H = 1;W = 1] :

So, with ME P [H(1) = 1] is bounded as follows:

P [H = 1;W = 1] + ��1 � �
+
1

[P (W = 1)� (�+1 + �
+
0 ) + (�

�
1 + �

�
0 )]

� P [H(1) = 1] � P (W = 0) + �+0 � �
�
0 + P [H = 1;W = 1] :

The bounds on P [H(0) = 1] are derived as follows:

The LB given by P [H = 1;W � = 0] is now given by

LB = P [H = 1;W = 0] + �+1 � �
�
1 :

The UB given by P [H=1;W �=0]
P (W �=0) is now given by

UB =
P [H = 1;W = 0] + �+1 � �

�
1

[P (W = 0) + (�+1 + �
+
0 )� (�

�
1 + �

�
0 )]
:

With ME, P [H(0) = 1] is bounded as follows:

P [H = 1;W = 0] + �+1 � �
�
1 � P [H(0) = 1] �

P [H = 1;W = 0] + �+1 � �
�
1

[P (W = 0) + (�+1 + �
+
0 )� (�

�
1 + �

�
0 )]
:
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4.1 Arbitrary Errors Model

Now, I impose only Assumption 1 about ME under the MTS assumption. The bounds on P [H(1) = 1]

are derived in the following way:

For the LB I set �+1 ! �UB+1 , ��0 ! �UB�0 , ��1 ! �LB�1 = 0, and �+0 ! �LB+0 = 0 so that

LB =
P [H = 1;W = 1]� �UB+1

[P (W = 1)� �UB+1 + �UB�0 ]
:

For the UB I set �+0 ! �UB+0 and ��0 ! �LB�0 = 0 so that

UB = P (W = 0) + �UB+0 + P [H = 1;W = 1] :

Accordingly, P [H(1) = 1] is bounded as follows:

P [H = 1;W = 1]� �UB+1

[P (W = 1)� �UB+1 + �UB�0 ]
� P [H(1) = 1] � P [H = 1;W = 1] + P (W = 0) + �UB+0 :

The bounds on P [H(0) = 1] can be derived similarly:

For the LB I set ��1 ! �UB�1 and �+1 ! �LB+1 = 0 so that

LB = P [H = 1;W = 0]� �UB�1 :

For the UB I set �+1 ! �UB+1 , ��0 ! �UB�0 , ��1 ! �LB�1 = 0, and �+0 ! �LB+0 = 0 so that

UB =
P [H = 1;W = 0] + �UB+1

P (W = 0) + �UB+1 � �UB�0

:

Accordingly, P [H(0) = 1] is bounded as follows:

P [H = 1;W = 0]� �UB�1 � P [H(0) = 1] � P [H = 1;W = 0] + �UB+1

P (W = 0) + �UB+1 � �UB�0

:

Since

ATE = P [H(1) = 1]� P [H(0) = 1]

the bounds on the ATE are given by:

UBATE = UBP [H(1)=1] � LBP [H(0)=1]

= P [H = 1;W = 1] + P (W = 0) + �UB+0 �
n
P [H = 1;W = 0]� �UB�1

o
LBATE = LBP [H(1)=1] � UBP [H(0)=1]

=
P [H = 1;W = 1]� �UB+1

P (W = 1)� �UB+1 + �UB�0

�
(
P [H = 1;W = 0] + �UB+1

P (W = 0) + �UB+1 � �UB�0

)
:

This is Equation 19 in Section 5.4.1. This UBATE is identical to the UBATE in the No Assumption

on Selection scenario under the Arbitrary Errors Model. This LBATE is identical to the LBATE in the

Exogenous Selection case under the Arbitrary Errors Model.
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4.2 No False Positives Model

With the additional assumption of no false positive errors, the bounds on P [H(1) = 1] are derived as

follows:

For the LB I set �+1 = 0, �
�
0 ! �UB�0 , ��1 ! �LB�1 = 0, and �+0 ! �LB+0 = 0 so that

LB =
P [H = 1;W = 1]

[P (W = 1) + �UB�0 ]
:

For the UB I set �+0 = 0 and �
�
0 ! �LB�0 = 0 so that

UB = P (W = 0) + P [H = 1;W = 1] :

Accordingly, P [H(1) = 1] is bounded as follows:

P [H = 1;W = 1]

[P (W = 1) + �UB�0 ]
� P [H(1) = 1] � P [H = 1;W = 1] + P (W = 0):

Similarly, the bounds on P [H(0) = 1] can be derived as shown below:

For the LB I set ��1 ! �UB�1 and �+1 ! �LB+1 = 0 so that

LB = P [H = 1;W = 0]� �UB�1 :

For the UB I set �+1 = 0, �
�
0 ! �UB�0 , ��1 ! �LB�1 = 0, and �+0 ! �LB+0 = 0 so that

UB =
P [H = 1;W = 0]

P (W = 0)� �UB�0

:

Accordingly, P [H(0) = 1] is bounded as follows:

P [H = 1;W = 0]� �UB�1 � P [H(0) = 1] � P [H = 1;W = 0]

P (W = 0)� �UB�0

:

Since

ATE = P [H(1) = 1]� P [H(0) = 1]

the bounds on the ATE are given by:

UBATE = UBP [H(1)=1] � LBP [H(0)=1]

= P [H = 1;W = 1] + P (W = 0)� fP [H = 1;W = 0]� �UB�1 g

LBATE = LBP [H(1)=1] � UBP [H(0)=1]

=
P [H = 1;W = 1]

P (W = 1) + �UB�0

�
(
P [H = 1;W = 0]

P (W = 0)� �UB�0

)
:

This UBATE is identical to the UBATE in the No Assumption on Selection scenario under the No False

Positives Errors Model. This LBATE is identical to the LBATE in the Exogenous Selection case under the

No False Positives Errors Model.
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5 Joint MTS and MIV

This section is based on Kreider and Pepper�s (2007) derivation of MIV bounds, including the �nite sample

bias corrected MIV bounds. The MIV implies that the latent probability P [H(1) = 1] or P [H(0) = 1]

increases with SES.

Let � =MIV = SES. Since H(1) = 1 and H(0) = 1 denote good outcomes: u1 < u < u2 implies

P [H(1) = 1j� = u2] � P [H(1) = 1j� = u] � P [H(1) = 1j� = u1]

and

P [H(0) = 1j� = u2] � P [H(0) = 1j� = u] � P [H(0) = 1j� = u1]

We know the MTS assumption implies

P [H(1) = 1jW � = 0] � P [H(1) = 1jW � = 1]

P [H(0) = 1jW � = 0] � P [H(0) = 1jW � = 1]

such that without ME:

) P [H = 1;W � = 1]

P (W � = 1)
� P [H(1) = 1] � P (W � = 0) + P [H = 1;W � = 1]

and

P [H = 1;W � = 0] � P [H(0) = 1] � P [H = 1;W � = 0]

P (W � = 0)
:

5.1 Deriving MTS-MIV bounds on ATE

1. Divide data into j SES groups, j = 1; 2; :::; J .

2. Calculate the MTS LB and UB for each SES group, according to the classi�cation error assumptions.

So, for each group, there will be 1 LB-UB pair for Arbitrary Errors model and 1 LB-UB pair for the

No False Positives Model.

3. To get the LBMIV for P [H(1) = 1] :

(a) For each SES group j: I have LBj = P [H=1;W �=1]
P (W �=1) : Let Pj denote the fraction of respondents

in SES group j. So, the LBMIV = Tn =
X
j

Pjfsupj0�j LBj
0g: This is because H(1) = 1 and

H(0) = 1 imply good outcomes. As SES increases, the probability of a good outcome increases.

So, the LB of the jth SES group is greater than the weighted average of the lower bounds of

lower SES groups.
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(b) To get the �nite sample bias-corrected LBMIV : Bootstrap sampling distribution of LBj :

i. Randomly draw with replacement K independent pseudosamples of the original data.

ii. Get K LBj-s.

iii. Get T kn =
X
j

Pjfsupj0�j LBj
0g; k = 1; 2; :::;K: The expected LB from the bootstrap distri-

bution is:

E�(Tn) =

KX
k=1

T kn

K
:

(c) The bias is calculated as follows:

b̂ = E�(Tn)� Tn:

(d) The bootstrap bias-corrected �nite sample LBMIV is given by:

LBMIV = T
c
n = Tn � b̂ = 2Tn � E�(Tn):

4. To get the UBMIV for P [H(1) = 1] :

(a) For each SES j: I have UBj = P (W � = 0) + P [H = 1;W � = 1] : Let Pj denote the fraction

of respondents in SES group j. So, the UBMIV = Un =
X
j

Pjfinfj0�j UBj
0g:This is because

H(1) = 1 and H(0) = 1 are good outcomes. As SES increases, the probability of a good outcome

increases. So, the UB of the jth SES group is smaller than the weighted average of the upper

bounds of higher SES groups.

(b) To get the �nite sample bias-corrected UBMIV : Bootstrap sampling distribution of UBj :

i. Randomly draw with replacement K independent pseudosamples of the original data.

ii. Get K UBj-s.

iii. Get Ukn =
X
j

Pjfinfj0�j UBj
0g; k = 1; 2; :::;K: The expected UB from the bootstrap distri-

bution is: E�(Un) =

KX
k=1

Ukn

K :

(c) The bias is calculated as follows:b̂ = E�(Un)� Un:

(d) The bootstrap bias-corrected �nite sample UBMIV is given by:

UBMIV = U
c
n = Un � b̂ = 2Un � E�(Un):

5. Similarly get the LBMIV and UBMIV for P [H(0) = 1] :

14



6. Now: ATE = P [H(1) = 1]� P [H(0) = 1] : Accordingly,

UBATE = UB
H(1)
MIV � LB

H(0)
MIV

and

LBATE = LB
H(1)
MIV � UB

H(0)
MIV .

6 Estimating the Imbens-Manski (2004) CI for partially identi�ed pa-

rameters

1. For each assumption model and each value of Q = 0; 0:01; 0:02; 0:05; and 0:10. I have UBATE and

LBATE .

2. Bootstrapping B times will yield B UBATE , B LBATE , and �̂l and �̂u:

3. De�ne � = UBATE � LBATE :

4.

� = �(CN +
p
N:

�

max(�̂l; �̂u)
)� �(�CN )

5.

CIATE� = [LBATE � CN :
�̂lp
N
;UBATE + CN :

�̂up
N
]
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